Skip to main content
Log in

Methane oxidation activity and diversity of aerobic methanotrophs in pH-neutral and semi-neutral thermal springs of the Kunashir Island, Russian Far East

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Aerobic methane oxidation has been mostly studied in environments with moderate to low temperatures. However, the process also occurs in terrestrial thermal springs, where little research on the subject has been done to date. The potential activity of methane oxidation and diversity of aerobic methanotrophic bacteria were studied in sediments of thermal springs with various chemical and physical properties, sampled across the Kunashir Island, the Kuriles archipelago. Activity was measured by means of the radioisotope tracer technique utilizing 14C-labeled methane. Biodiversity assessments were based on the particulate methane monooxygenase (pmoA) gene, which is found in all known thermophilic and thermotolerant methanotrophs. We demonstrated the possibility of methane oxidation in springs with temperature exceeding 74 °C, and the most intensive methane uptake was shown in springs with temperatures about 46 °C. PmoA was detected in 19 out of 30 springs investigated and the number of pmoA gene copies varied between 104 and 106 copies per ml of sediment. Phylogenetic analysis of PmoA sequences revealed the presence of methanotrophs from both the Alpha- and Gammaproteobacteria. Our results suggest that methanotrophs inhabiting thermal springs with temperature exceeding 50 °C may represent novel thermophilic and thermotolerant species of the genera Methylocystis and Methylothermus, as well as previously undescribed Gammaproteobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Amelunxen R, Murdock A, Welker N (1978) Mechanisms of thermophily. Crit Rev Microbiol 6:343–393

    Article  CAS  Google Scholar 

  • Bodrossy L, Holmes E, Holmes A, Kovacs K, Murrell J (1997) Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov. Arch Microbiol 168:493–503

    Article  CAS  PubMed  Google Scholar 

  • Bodrossy L, Kovacs K, McDonald I, Murrell J (1999) A novel thermophilic methane-oxidizing γ-Proteobacterium. FEMS Microbiol Lett 170:335–341

    CAS  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert C, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen B, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–627

    Article  CAS  PubMed  Google Scholar 

  • Bonch-Osmolovskaya E (2012) Metabolic diversity of thermophilic prokaryotes—what’s new? In: Anitori R (ed) Extremophiles: microbiology and biotechnology. Caister Academic Press, Norfolk, pp 109–131

    Google Scholar 

  • Cicerone R, Oremland R (1988) Biogeochemical aspects of atmospheric methane. Glob Biogeochem Cycl 4:299–327

    Article  Google Scholar 

  • Dedysh S, Panikov N (1997) Effect of methane concentration on the rate of its oxidation by bacteria in Sphagnum peat. Microbiology 66:470–475

    CAS  Google Scholar 

  • Dedysh S, Knief C, Dunfield P (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duan Z, Møller N, Greenberg J, Weare J (1992) The prediction of methane solubility in natural waters to high ionic strength from 0 to 250 C and from 0 to 1600 bar. Geochim Cosmochim Acta 56:1451–1460

    Article  CAS  Google Scholar 

  • Dunfield P (2007) The soil methane sink. In: Reay D, Hewitt C, Smith K, Grace J (eds) Greenhouse gas sinks. CAB International, Cambridge, pp 153–170

    Google Scholar 

  • Dunfield P (2009) Methanotrophy in extreme environments. In: Encyclopedia of life sciences (eLS). Wiley, Chichester. doi:10.1002/9780470015902.a0021897

  • Dunfield P, Yimga M, Dedysh S, Berger U, Liesack W, Heyer J (2002) Isolation of a Methylocystis strain containing a novel pmoA-like gene. FEMS Microbiol Ecol 41:17–26

    Article  CAS  PubMed  Google Scholar 

  • Etiope G (2010) Geological methane. In: Reay D, Smith P, van Amstel A (eds) Methane and climate change. Earthscan Ltd, London, pp 42–62

    Google Scholar 

  • Etiope G, Ciccioli P (2009) Earth’s degassing: a missing ethane and propane source. Science 323:478–478

    Google Scholar 

  • Etiope G, Klusman R (2002) Geologic emissions of methane to the atmosphere. Chemosphere 49:777–789

    Article  CAS  PubMed  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HTCT, van Alen T, Luesken F,  Wu M, van de Pas-Schoonen K, Op den Camp H, Janssen-Megens E, Francoijs K, Stunnenberg H, Weissenbach J, Jetten M, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Google Scholar 

  • Fiebig J, Woodland AB, Spangenberg J, Oschmann W (2007). Natural evidence for rapid abiogenic hydrothermal generation of CH4. Geochim Cosmochim Acta 71:3028–3039

    Google Scholar 

  • Foster J, Davis R (1966) A methane-dependent coccus, with notes on classification and nomenclature of obligate, methane-utilizing bacteria. J Bacteriol 91:1924–1931

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galchenko V (2001) Methane-oxidizing bacteria. GEOS, Moscow

    Google Scholar 

  • Giggenbach W (1995) Variations in the chemical and isotopic composition of fluids discharged from the Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 68:89–116

    Article  CAS  Google Scholar 

  • Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

  • Henckel T, Friedrich M, Conrad R (1999) Molecular analyses of the methane oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl Environ Microbiol 65:1980–1990

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henneberger R, Luke C, Mosberger L, Schroth M (2012) Structure and function of methanotrophic communities in a landfill-cover soil. FEMS Microbiol Ecol 81:52–65

    Article  CAS  PubMed  Google Scholar 

  • Hery M, Singer A, Kumaresan D, Bodrossy L, Stralis-Pavese N, Prosser J, Thompson I, Murrell J (2008) Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil. ISME J 2:92–104

    Article  CAS  PubMed  Google Scholar 

  • Hirayama H, Suzuki Y, Abe M, Miyazaki M, Makita H, Inagaki F, Uematsu K, Takai K (2011) Methylothermus subterraneus sp. nov., a moderately thermophilic methanotrophic bacterium from a terrestrial subsurface hot aquifer in Japan. Int J Syst Evol Microbiol 61:2646–2653

    Article  CAS  PubMed  Google Scholar 

  • Ho A, Luke C, Cao Z, Frenzel P (2011) Ageing well: methane oxidation and methane oxidizing bacteria along a chronosequence of 2000 years. Environ Microbiol Rep 6:738–743

    Article  Google Scholar 

  • Hoehler T, Alperin M, Albert D, Martens C (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediments: evidence for a methanogen-sulfate reducer consortium. Global Geochem Cycles 8:451–463

    Article  CAS  Google Scholar 

  • Holmes A, Costello A, Lidstrom M, Murrell JC (1995) Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208

    Google Scholar 

  • Inagaki F, Takai K, Hirayama H, Yamato Yu, Nealson K, Horikoshi K (2003) Distribution and phylogenetic diversity of the subsurface microbial community in a Japanese epithermal gold mine. Extremophiles 7:307–317

    Article  CAS  PubMed  Google Scholar 

  • Inagaki F, Tsunogai U, Suzuki M, Kosaka A, Machiyama H, Takai K, Nunoura T, Nealson K, Horikoshi K (2004) Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, Southern Ryukyu Arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Appl Environ Microbiol 127:7445–7455

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: Synthesis Report. Cambridge University Press, Cambridge

    Google Scholar 

  • Kalyuzhnaya M, Hristova K, Lidstrom M, Chistoserdova L (2008) Characterization of a novel methanol dehydrogenase in representatives of Burkholderiales: implications for environmental detection of methylotrophy and evidence for convergent evolution. J Bacteriol 11:3817–3823

    Article  Google Scholar 

  • Kizilova A, Dvoryanchikova E, Sukhacheva M, Kravchenko I, Gal’chenko V (2012) Investigation of the methanotrophic communities of the hot springs of the Uzon caldera, Kamchatka, by molecular ecological techniques. Microbiology 81:606–613

    Article  CAS  Google Scholar 

  • Kizilova A, Yurkov A, Kravchenko I (2013) Aerobic methanotrophs in natural and agricultural soils of European Russia. Diversity 5:541–556

    Article  Google Scholar 

  • Lindner A, Pacheco A, Aldrich H, Costello E, Staniec A, Uz I, Hodson D (2007) Methylocystis hirsuta sp. nov., a novel methanotroph isolated from a groundwater aquifer. Int J Syst Evol Microbiol 57:1891–1900

    Article  CAS  PubMed  Google Scholar 

  • Malashenko Y, Romanovskaya V, Bogachenko V, Shved A (1975) Thermophilic and thermotolerant methane-assimilating bacteria. Microbiology 44:855–862 (in Russian)

    PubMed  Google Scholar 

  • Markhinin E, Stratula D (1977) Hydrotherms of the Kuril Islands. Nauka, Moscow, pp 212 (in Russian)

  • Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M et al (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297:1013–1015

    Article  CAS  PubMed  Google Scholar 

  • Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MM (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491:541–546

    Article  CAS  PubMed  Google Scholar 

  • Morris S, Radajewski S, Willison T, Murrell J (2002) Identification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probing. Appl Environ Microbiol 68:1446–1453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nikulina T, Kociolek P (2011) Diatoms from hot springs from Kuril and Sakhalin Islands (Far East, Russia). In: Seckbach J, Kociolek P (eds) The diatom world, vol 19. Springer, Netherlands, pp 333–363

    Chapter  Google Scholar 

  • Op den Camp H, Islam T, Stott M, Harhangi H, Hynes A, Schouten S, Jetten M, Birkeland N-K, Pol A, Dunfield P (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1:293–306

    Article  CAS  PubMed  Google Scholar 

  • Rusanov I, Savvichev A, Yusupov S, Pimenov N, Ivanov M (1998) Formation of exometabolites during microbial oxidation of methane in marine ecosystems. Microbiology 67:710–717

    Google Scholar 

  • Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337

    Article  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Stein L, Réal R, Dunfield P (2012) Aerobic methanotrophy and nitrification: processes and connections. In: Encyclopedia of life sciences (eLS). Wiley, Chichester. doi:10.1002/9780470015902.a0022213

  • Svetlichny V, Sokolova T, Gerhardt M, Kostrikina N, Zavarzin G (1991) Anaerobic extremely thermophilic carboxydotrophic bacteria in hydrotherms of Kuril Islands. Microb Ecol 21:1–10

    CAS  PubMed  Google Scholar 

  • Thauer R, Kaster A-K, Seedorf H, Buckel W, Reiner H (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591

    Article  CAS  PubMed  Google Scholar 

  • Tsubota J, Eshinimaev B, Khmelenina V, Trotsenko Y (2005) Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int J Syst Evol Microbiol 55:1877–1884

    Article  CAS  PubMed  Google Scholar 

  • Tsyrenzhapova I, Eshinimayev B, Khmelenina V, Osipov G, Trotsenko Yu (2007) A new thermotolerant aerobic methanotroph from a thermal spring in Buryatia. Microbiology 76:118–121

    Article  CAS  Google Scholar 

  • Vishwakarma P, Singh M, Dubey S (2010) Changes in methanotrophic community composition after rice crop harvest in tropical soils. Biol Fertil Soil 5:471–479

    Article  Google Scholar 

  • Vorobev A, Baani M, Doronina N, Brady A, Liesack W, Dunfield P, Dedysh S (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61:2456–2463

    Article  CAS  PubMed  Google Scholar 

  • Wankel S, Adams M, Johnston D, Hansel C, Joye S, Girguis P (2012) Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction. Environ Microbiol 14:2726–2740

    Article  CAS  PubMed  Google Scholar 

  • Wieczorek A, Drake H, Kolb S (2011) Organic acids and ethanol inhibit the oxidation of methane by mire methanotrophs. FEMS Microbiol Ecol 77:28–39

    Article  CAS  PubMed  Google Scholar 

  • Yun J, Yu Z, Li K, Zhang H (2012) Diversity, abundance and vertical distribution of methane-oxidizing bacteria (methanotrophs) in the sediments of the Xianghai wetland, Songnen Plain, northeast China. J Soils Sediments 13:242–252

    Article  Google Scholar 

  • Zelenkina T, Eshinimayev B, Dagurova O, Suzina N, Namsarayev B, Trotsenko Yu (2009) Aerobic methanotrophs from the coastal thermal springs of Lake Baikal. Microbiology 4:492–497

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the RFBR research project 12-04-31546a for young scientists. Authors would like to thank members of the Laboratory of Hyperthermophilic Microorganisms (Winogradsky Institute of Microbiology, RAS), who have organized the expedition to Kuril Islands. Authors are also grateful to the staff of Kurilsky natural reserve for their assistance in sampling. Dr. Svetlana Dedysh (Winogradsky Institute of Microbiology, RAS), Dr. Stefan Spring and Dr. Brian J. Tindall (Leibniz-Institute DSMZ) are acknowledged for the valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Kizilova.

Additional information

Communicated by F. Robb.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kizilova, A.K., Sukhacheva, M.V., Pimenov, N.V. et al. Methane oxidation activity and diversity of aerobic methanotrophs in pH-neutral and semi-neutral thermal springs of the Kunashir Island, Russian Far East. Extremophiles 18, 207–218 (2014). https://doi.org/10.1007/s00792-013-0603-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-013-0603-z

Keywords

Navigation