Skip to main content

Review: the Antarctic Chlamydomonas raudensis: an emerging model for cold adaptation of photosynthesis

Abstract

Permanently cold habitats dominate our planet and psychrophilic microorganisms thrive in cold environments. Environmental adaptations unique to psychrophilic microorganisms have been thoroughly described; however, the vast majority of studies to date have focused on cold-adapted bacteria. The combination of low temperatures in the presence of light is one of the most damaging environmental stresses for a photosynthetic organism: in order to survive, photopsychrophiles (i.e. photosynthetic organisms adapted to low temperatures) balance temperature-independent reactions of light energy capture/transduction with downstream temperature-dependent metabolic processes such as carbon fixation. Here, we review research on photopsychrophiles with a focus on an emerging model organism, Chlamydomonas raudensis UWO241 (UWO241). UWO241 is a psychrophilic green algal species and is a member of the photosynthetic microbial eukaryote community that provides the majority of fixed carbon for ice-covered lake ecosystems located in the McMurdo Dry Valleys, Antarctica. The water column exerts a range of environmental stressors on the phytoplankton community that inhabits this aquatic ecosystem, including low temperatures, extreme shade of an unusual spectral range (blue-green), high salinity, nutrient deprivation and extremes in seasonal photoperiod. More than two decades of work on UWO241 have produced one of our most comprehensive views of environmental adaptation in a cold-adapted, photosynthetic microbial eukaryote.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

cDNA:

Complementary DNA

Chl:

Chlorophyll

Ea:

Activation energy

ELB:

East lobe Bonney

HSP:

Heat shock proteins

IBP:

Ice-binding proteins

k cat :

Catalytic constant

KEGG:

Kyoto Encyclopedia of Genes and Genomes

LHC:

Light-harvesting complex

MGDG:

Monogalactosyldiacylglycerol

PQ:

Plastoquinone

PSI:

Photosystem I

PSII:

Photosystem II

NR:

Nitrate reductase

Q A :

Quinone A

Q Ared,ox :

Reduced or oxidized quinone A

qE:

Energy-dependent quenching

qPCR:

Quantitative PCR

RubisCO:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

T max :

Maximum growth temperature

WLB:

West lobe Bonney

References

  • Alexander E, Stock A, Breiner HW, Behnke A, Bunge J, Yakimov MM, Stoeck T (2009) Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ Microbiol 11:360–381

    PubMed  Article  CAS  Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    PubMed  Article  CAS  Google Scholar 

  • Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM, Pielke RA Jr et al (2003) Abrupt climate change. Science 299:2005–2010

    PubMed  Article  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Ann Rev Plant Biol 59:89–113

    Article  CAS  Google Scholar 

  • Bennett J, Steinback KE, Arntzen CJ (1980) Chloroplast phosphoproteins: regulation of excitation energy transfer by phosphorylation of thylakoid membrane polypeptides. Proc Nat Acad Sci USA 77:5253–5257

    PubMed  Article  CAS  Google Scholar 

  • Bernstein, L, Bosch, P, Canziani, O, Chen, Z, Christ, R, Davidson, O et al (2007) Intergovernmental panel on climate change fourth assessment report. In: Jallow BP, Kajfež-Bogataj L, Bojariu R, Hawkins D, Diaz S, Lee H et al (eds) Climate change 2007 synthesis report. Cambridge University Press, Cambridge

  • Bielewicz S, Bell EM, Kong W, Friedberg I, Priscu JC, Morgan-Kiss RM (2011) Protist diversity in a permanently ice-covered Antarctic lake during the polar night transition. ISME J 5:1559–1564

    PubMed  Article  Google Scholar 

  • Bonente G, Passarini F, Cazzaniga S, Mancone C, Buia MC, Tripodi M et al (2008) The occurrence of the psbS gene product in Chlamydomonas reinhardtii and in other photosynthetic organisms and its correlation with energy quenching. Photochem Photobiol 84:1359–1370

    PubMed  Article  CAS  Google Scholar 

  • Bredemeijer G, Esselink G (1995) Glucose 6-phosphate dehydrogenase during cold-hardening in Lolium perenne. J Plant Physiol 145:565–569

    Article  CAS  Google Scholar 

  • Chen Z, He C, Hu H (2012) Temperature responses of growth, photosynthesis, fatty acid and nitrate reductase in Antarctic and temperate Stichococcus. Extremophiles 16:127–133

    PubMed  Article  CAS  Google Scholar 

  • Chintalapati S, Kiran M, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol 50:631

    PubMed  CAS  Google Scholar 

  • D’Amico S, Claverie P, Collins T, Georlette D, Gratia E, Hoyoux A et al (2002) Molecular basis of cold adaptation. Philos Trans R Soc Lond B Biol Sci 357:917–925

    PubMed  Article  Google Scholar 

  • D’amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    PubMed  Article  Google Scholar 

  • Demmig-Adams B, Adams WW III (1992) Photoprotection and other responses of plants to high light stress. Ann Rev Plant Physiol Plant Mol Biol 43:599–626

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Cohu C, Muller O, Adams W (2012) Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth Res 113:75–88

    PubMed  Article  CAS  Google Scholar 

  • Depège N, Bellafiore S, Rochaix J-D (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299:1572–1575

    PubMed  Article  Google Scholar 

  • Ding Y, Miao J-L, Wang Q-F, Zheng Z, Li G-Y, Jian J-C, Wu Z-H (2007) Purification and characterization of a psychrophilic glutathione reductase from Antarctic ice microalgae Chlamydomonas sp. Strain ICE-L. Polar Biol 31:23–30

    Article  Google Scholar 

  • Dolhi JM, Ketchum N, Morgan-Kiss RM (2012) Establishment of microbial eukaryotic enrichment cultures from a chemically stratified antarctic lake and assessment of carbon fixation potential. J Vis Exp 62:e3992

    Google Scholar 

  • Doran PT, McKay CP, Fountain AG, Nylen T, McKnight DM, Jaros C, Barrett JE (2008) Hydrologic response to extreme warm and cold summers in the McMurdo Dry Valleys, East Antarctica. Ant Sci 20:499–509

    Article  Google Scholar 

  • Doyle S, Dieser M, Broemsen E, Christner BC (2011) General characteristics of cold-adapted microorganisms. In: Miller RV, Whyte L (eds) Polar microbiology: life in a deep freeze. ASM Press, Washington, DC, pp 103–125

    Google Scholar 

  • Ensminger I, Busch F, Huner NPA (2006) Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol Plant 126:28–44

    Article  CAS  Google Scholar 

  • Falkowski PG, Owens TG (1980) Light–shade adaptation. Plant Physiol 66:592–595

    PubMed  Article  CAS  Google Scholar 

  • Ferrara M, Guerriero G, Cardi M, Esposito S (2013) Purification and biochemical characterisation of a glucose-6-phosphate dehydrogenase from the psychrophilic green alga Koliella antarctica. Extremophiles 17:53–62

    PubMed  Article  CAS  Google Scholar 

  • Fritsen CH, Adams EE, McKay CP, Priscu JC (1988) Permanent ice covers of the McMurdo Dry Valley Lakes, Antarctica: liquid water content. In: Priscu JC (ed) Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica. American Geophysical Union, Washington, DC

    Google Scholar 

  • Gray GR, Chauvin LP, Sarhan F, Huner N (1997) Cold acclimation and freezing tolerance (a complex interaction of light and temperature). Plant Physiol 114:467–474

    PubMed  CAS  Google Scholar 

  • Gray GR, Ivanov AG, Krol M, Williams JP, Kahn MU, Myscich EG, Huner NP (2005) Temperature and light modulate the trans-Δ3-hexadecenoic acid content of phosphatidylglycerol: light-harvesting complex II organization and non-photochemical quenching. Plant Cell Physiol 46:1272–1282

    PubMed  Article  CAS  Google Scholar 

  • Griffith M, Yaish MW (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9:399–405

    PubMed  Article  CAS  Google Scholar 

  • Honjoh K-I, Mimura A, Kuroiwa E, Hagisako T, Suga K, Shimizu H et al (2003) Purification and characterization of two isoforms of glucose 6-phosphate dehydrogenase (G6PDH) from Chlorella vulgaris C-27. Biosci Biotechnol Biochem 67:1888–1896

    PubMed  Article  CAS  Google Scholar 

  • Hughes MA, Dunn MA (1996) The molecular biology of plant acclimation to low temperature. J Exp Bot 47:291–305

    Article  CAS  Google Scholar 

  • Hüner NPA, Maxwell DP, Gray GR, Savitch LV, Laudenbach DE, Falk S (1995) Photosynthetic response to light and temperature: PSII excitation pressure and redox signalling. Physiol Plant 17:167–176

    Google Scholar 

  • Hüner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Article  Google Scholar 

  • Hüner NPA, Öquist G, Melis A (2003) Photostasis in plants, green algae and cyanobacteria: the role of light harvesting antenna complexes. In: Green BR, Parson WW (eds) Advances in photosynthesis and respiration light harvesting antennas in photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 401–421

    Chapter  Google Scholar 

  • Jaffri S (2011) Characterization of the photosynthetic apparatus of Chlorella BI sp., an Antarctic mat alga under varying trophic growth states. In: Microbiol. Miami University, Oxford

  • Janech MG, Krell A, Mock T, Kang JS, Raymond JA (2006) Ice-binding proteins from sea ice diatoms (Bacillariophyceae). J Phycol 42:410–416

    Article  CAS  Google Scholar 

  • Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5:365–374

    Article  Google Scholar 

  • Joanisse D, Storey K (1994) Enzyme activity profiles in an overwintering population of freeze-tolerant larvae of the gall fly, Eurosta solidaginis. J Comp Physiol B 164:247–255

    Article  CAS  Google Scholar 

  • Jungblut AD, Vincent WF, Lovejoy C (2012) Eukaryotes in Arctic and Antarctic cyanobacterial mats. FEMS Microbiol Ecol 82:416–428

    PubMed  Article  CAS  Google Scholar 

  • Kong W, Ream DC, Priscu JC, Morgan-Kiss RM (2012) Diversity and expression of RubisCO genes in a perennially ice-covered lake during the polar night transition. Appl Environ Microbiol 78:4358–4366

    PubMed  Article  CAS  Google Scholar 

  • Krell A, Funck D, Plettner I, John U, Dieckmann G (2007) Regulation of proline metabolism under salt stress in the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae). J Phycol 43:753–762

    Article  CAS  Google Scholar 

  • Krembs C, Gradinger R, Spindler M (2000) Implications of brine channel geometry and surface area for the interaction of sympagic organisms in Arctic sea ice. J Exp Mar Biol Ecol 243:55–80

    Article  Google Scholar 

  • Lee JK, Park KS, Park S, Park H, Song YH, Kang S-H, Kim HJ (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiol 60:222–228

    Article  CAS  Google Scholar 

  • Liska AJ, Shevchenko A, Pick U, Katz A (2004) Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol 136:2806–2817

    PubMed  Article  CAS  Google Scholar 

  • Lizotte MP, Priscu JC (1992) Photosynthesis-irradiance relationships in phytoplankton from the physically stable water column of a perennially ice-covered lake (Lake Bonney, Antarctica). J Phycol 28:179–185

    Article  Google Scholar 

  • Lizotte MP, Sharp TR, Priscu JC (1996) Phytoplankton dynamics in the stratified water column of Lake Bonney, Antarctica. I. Biomass and productivity during the winter-spring transition. Polar Biol 16:155–162

    Article  Google Scholar 

  • Lopez-Garcia P, Rodriguez-Valera F, Pedros-Alio C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Lett Nat 409:603–607

    Article  CAS  Google Scholar 

  • Loppes R, Devos N, Willem S, Barthelemy P, Matagne RF (1996) Effect of temperature on two enzymes from a psychrophilic Chloromonas (Chlorophyta). J Phycol 32:276–278

    Article  CAS  Google Scholar 

  • Lovejoy C, Massana R, Pedros-Alio C (2006) Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl Environ Microbiol 72:3085–3095

    PubMed  Article  CAS  Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361

    PubMed  Article  Google Scholar 

  • Maxwell DP, Falk S, Trick CG, Huner NPA (1994) Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol 105:535–543

    PubMed  CAS  Google Scholar 

  • Maxwell DP, Falk S, Huner N (1995a) Photosystem II excitation pressure and development of resistance to photoinhibition (I. light-harvesting complex II abundance and zeaxanthin content in Chlorella vulgaris). Plant Physiol 107:687–694

    PubMed  CAS  Google Scholar 

  • Maxwell DP, Laudenbach DE, Huner N (1995b) Redox regulation of light-harvesting complex II and cab mRNA abundance in Dunaliella salina. Plant Physiol 109:787–795

    PubMed  CAS  Google Scholar 

  • Miskiewicz E, Ivanov AG, Williams JP, Khan MU, Falk S, Huner NP (2000) Photosynthetic acclimation of the filamentous cyanobacterium, Plectonema boryanum UTEX 485, to temperature and light. Plant Cell Physiol 41:767–775

    PubMed  Article  CAS  Google Scholar 

  • Miskiewicz E, Ivanov AG, Huner NP (2002) Stoichiometry of the photosynthetic apparatus and phycobilisome structure of the cyanobacterium Plectonema boryanum UTEX 485 are regulated by both light and temperature. Plant Physiol 130:1414–1425

    PubMed  Article  CAS  Google Scholar 

  • Morgan RM, Ivanov AG, Priscu JC, Maxwell DP, Hüner NPA (1998) Structure and composition of the photochemical apparatus of the Antarctic green alga, Chlamydomonas subcaudata. Photosynth Res 56:303–314

    Article  CAS  Google Scholar 

  • Morgan-Kiss RM, Dolhi JM (2011) Microorganisms and plants: a photosynthetic perspective. In: Tanino K, Storey K (eds) Nature at risk: temperature adaptation in a changing climate. CABI, Wallingford, pp 24–44

    Chapter  Google Scholar 

  • Morgan-Kiss R, Ivanov AG, Williams J, Mobashsher K, Hüner NP (2002a) Differential thermal effects on the energy distribution between photosystem II and photosystem I in thylakoid membranes of a psychrophilic and a mesophilic alga. Biochim Biophys Acta 1561:251–265

    PubMed  Article  CAS  Google Scholar 

  • Morgan-Kiss RM, Ivanov AG, Hüner NPA (2002b) The Antarctic psychrophile, Chlamydomonas subcaudata, is deficient in state I-state II transitions. Planta 214:435–445

    PubMed  Article  CAS  Google Scholar 

  • Morgan-Kiss RM, Ivanov AG, Pocock T, Król M, Gudynaite-Savitch L, Hüner NPA (2005) The Antarctic psychrophile, Chlamydomonas raudensis Ettl (UWO241) (CHLOROPHYCEAE, CHLOROPHYTA) exhibits a limited capacity to photoacclimate to red light. J Phycol 41:791–800

    Article  Google Scholar 

  • Morgan-Kiss RM, Priscu JP, Pocock T, Gudynaite-Savitch L, Hüner NPA (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70:222–252

    PubMed  Article  CAS  Google Scholar 

  • Morgan-Kiss RM, Ivanov A, Modla S, Cyzmmek K, Huner NPA, Priscu JC, Hanson TE (2008) Identity and phylogeny of a new psychrophilic eukaryotic green alga, Chlorella sp. strain BI isolated from a transitory pond near Bratina Island, Antarctica. Extremophiles 12:701–711

    PubMed  Article  CAS  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421

    PubMed  Article  CAS  Google Scholar 

  • Napolitano MJ, Shain DH (2004) Four kingdoms on glacier ice: convergent energetic processes boost energy levels as temperatures fall. Proc R Soc Lond B 271:273–276

    Article  Google Scholar 

  • Napolitano MJ, Shain DH (2005) Distinctions in adenylate metabolism among organisms inhabiting temperature extremes. Extremophiles 9:93–98

    PubMed  Article  CAS  Google Scholar 

  • Neale PJ, Priscu JC (1995) The photosynthetic apparatus of phytoplankton from a perennially ice-covered Antarctic lake: acclimation to an extreme shade environment. Plant Cell Physiol 36:253–263

    CAS  Google Scholar 

  • Parry BR, Shain DH (2011) Manipulations of AMP metabolic genes increase growth rate and cold tolerance in Escherichia coli: implications for psychrophilic evolution. Mol Biol Evol 28:2139–2145

    PubMed  Article  CAS  Google Scholar 

  • Parry MA, Keys AJ, Madgwick PJ, Carmo-Silva AE, Andralojc PJ (2008) Rubisco regulation: a role for inhibitors. J Exp Bot 59:1569–1580

    PubMed  Article  CAS  Google Scholar 

  • Pocock T (2004) Phylogeny, photoinhibition and recovery of a new Antarctic psychrophile Chlamydomonas raudensis (UWO 241). In: Biology. University of Western Ontario, London

  • Pocock T, Lachance M-A, Proschold T, Priscu JC, Kim S, Huner NPA (2004) Identification of a psychrophilic green alga from Lake Bonney Antarctica: Chlamydomonas raudensis ETTL. (UWO 241) (Chlorophyceae). J Phycol 40:1138–1148

    Article  Google Scholar 

  • Pocock T, Koziak A, Rosso D, Falk S, Huner HPA (2007) Chlamydomonas raudensis ettl. (UWO241) exhibits the capacity for rapid D1 repair in response to chronic photoinhibition at low temperature. J Phycol 43:924–936

    Article  CAS  Google Scholar 

  • Pocock T, Vetterli A, Falk S (2011) Evidence for phenotypic plasticity in the Antarctic extremophile Chlamydomonas raudensis Ettl. UWO 241. J Exp Bot 62:1169–1177

    PubMed  Article  CAS  Google Scholar 

  • Possmayer M, Berardi G, Beall BFN, Trick CG, Hüner NPA, Maxwell DP (2011) Plasticity of the psychrophilic green alga Chlamydomonas raudensis (UWO 241) (Chlorophyta) to supraoptimal temperature stress. J Phycol 47:1098–1109

    Article  CAS  Google Scholar 

  • Priscu JC (1995) Phytoplankton nutrient deficiency in lakes of the McMurdo Dry Valleys, Antarctica. Freshw Biol 34:215–227

    Article  Google Scholar 

  • Priscu JC, Palmisano AC, Priscu LR, Sullivan CW (1989) Temperature dependence of inorganic nitrogen uptake and assimilation in Antarctic sea-ice microalgae. Polar Biol 9:442–446

    Article  Google Scholar 

  • Priscu JC, Fritsen CH, Adams EE, Giovannoni SJ, Paerl HW, McKay CP et al (1998) Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280:2095–2098

    PubMed  Article  CAS  Google Scholar 

  • Raymond JA, Kim HJ (2012) Possible role of horizontal gene transfer in the colonization of sea ice by algae. PLoS ONE 7:e35968

    PubMed  Article  CAS  Google Scholar 

  • Raymond JA, Morgan-Kiss R (2013) Separate origins of ice-binding proteins in Antarctic Chlamydomonas species. PLoS ONE 8:e59186

    PubMed  Article  CAS  Google Scholar 

  • Raymond JA, Janech MG, Fritsen CH (2009) Novel ice-binding proteins from a psychrophilic Antarctic alga (Chlamydomonadaceae, Chlorophyceae). J Phycol 45:130–136

    Article  CAS  Google Scholar 

  • Rigano M, Vona V, Lobosco O, Carillo P, Rigano C (2006) Temperature dependence of nitrate reductase in the psychrophilic unicellular alga Koliella antarctica and the mesophilic alga Chlorella sorokiniana. Plant Cell Environ 29:1400–1409

    PubMed  Article  Google Scholar 

  • Sage RF, Way DA, Kubien DS (2008) Rubisco, Rubisco activase, and global climate change. J Exp Bot 59:1581–1595

    PubMed  Article  CAS  Google Scholar 

  • Siglioccolo A, Gerace R, Pascarella S (2010) “Cold spots” in protein cold adaptation: insights from normalized atomic displacement parameters (B′-factors). Biophys Chem 153:104–114

    PubMed  Article  CAS  Google Scholar 

  • Szyszka B, Ivanov AG, Huner NPA (2007) Psychrophily induces differential energy partitioning, photosystem stoichiometry and polypeptide phosphorylation in Chlamydomonas raudensis. Biochim Biophys Acta 1767:789–800

    PubMed  Article  CAS  Google Scholar 

  • Takizawa K, Takahashi S, Huner NPA, Minagawa J (2009) Salinity effects the photoacclimation of Chlamydomonas raudensis Ettl UWO241. Photosynth Res 99:195–203

    PubMed  Article  CAS  Google Scholar 

  • Williamson CE, Saros JE, Schindler DW (2009) Climate change: sentinels of change. Science 323:887–888

    PubMed  Article  CAS  Google Scholar 

  • Wilson KE, Ivanov AG, Oquist G, Grodzinski B, Sarhan F, Huner NPA (2006) Energy balance, organellar redox status and acclimation to environmental stress. Can J Bot 84:1355–1370

    Article  CAS  Google Scholar 

  • Wollman FA (2001) State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J 20:3623–3630

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank John C. Priscu and Patrick J. Neale for original isolation and donation of Chlamydomonas raudensis UWO241 strain. RMK and JMD were supported by the National Science Foundation Faculty Early Career Development (CAREER) Program and Office of Polar Programs (Grant Nos. ANT0631659 and ANT1056396).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachael M. Morgan-Kiss.

Additional information

Communicated by S. Albers.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dolhi, J.M., Maxwell, D.P. & Morgan-Kiss, R.M. Review: the Antarctic Chlamydomonas raudensis: an emerging model for cold adaptation of photosynthesis. Extremophiles 17, 711–722 (2013). https://doi.org/10.1007/s00792-013-0571-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-013-0571-3

Keywords

  • Antarctica
  • Microbial eukaryote
  • Psychrophile
  • Photosynthesis