Extremophiles

, Volume 17, Issue 5, pp 711–722 | Cite as

Review: the Antarctic Chlamydomonas raudensis: an emerging model for cold adaptation of photosynthesis

  • Jenna M. Dolhi
  • Denis P. Maxwell
  • Rachael M. Morgan-Kiss
Review

Abstract

Permanently cold habitats dominate our planet and psychrophilic microorganisms thrive in cold environments. Environmental adaptations unique to psychrophilic microorganisms have been thoroughly described; however, the vast majority of studies to date have focused on cold-adapted bacteria. The combination of low temperatures in the presence of light is one of the most damaging environmental stresses for a photosynthetic organism: in order to survive, photopsychrophiles (i.e. photosynthetic organisms adapted to low temperatures) balance temperature-independent reactions of light energy capture/transduction with downstream temperature-dependent metabolic processes such as carbon fixation. Here, we review research on photopsychrophiles with a focus on an emerging model organism, Chlamydomonas raudensis UWO241 (UWO241). UWO241 is a psychrophilic green algal species and is a member of the photosynthetic microbial eukaryote community that provides the majority of fixed carbon for ice-covered lake ecosystems located in the McMurdo Dry Valleys, Antarctica. The water column exerts a range of environmental stressors on the phytoplankton community that inhabits this aquatic ecosystem, including low temperatures, extreme shade of an unusual spectral range (blue-green), high salinity, nutrient deprivation and extremes in seasonal photoperiod. More than two decades of work on UWO241 have produced one of our most comprehensive views of environmental adaptation in a cold-adapted, photosynthetic microbial eukaryote.

Keywords

Antarctica Microbial eukaryote Psychrophile Photosynthesis 

Abbreviations

cDNA

Complementary DNA

Chl

Chlorophyll

Ea

Activation energy

ELB

East lobe Bonney

HSP

Heat shock proteins

IBP

Ice-binding proteins

kcat

Catalytic constant

KEGG

Kyoto Encyclopedia of Genes and Genomes

LHC

Light-harvesting complex

MGDG

Monogalactosyldiacylglycerol

PQ

Plastoquinone

PSI

Photosystem I

PSII

Photosystem II

NR

Nitrate reductase

QA

Quinone A

QAred,ox

Reduced or oxidized quinone A

qE

Energy-dependent quenching

qPCR

Quantitative PCR

RubisCO

Ribulose-1,5-bisphosphate carboxylase/oxygenase

Tmax

Maximum growth temperature

WLB

West lobe Bonney

References

  1. Alexander E, Stock A, Breiner HW, Behnke A, Bunge J, Yakimov MM, Stoeck T (2009) Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ Microbiol 11:360–381PubMedCrossRefGoogle Scholar
  2. Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550PubMedCrossRefGoogle Scholar
  3. Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM, Pielke RA Jr et al (2003) Abrupt climate change. Science 299:2005–2010PubMedCrossRefGoogle Scholar
  4. Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Ann Rev Plant Biol 59:89–113CrossRefGoogle Scholar
  5. Bennett J, Steinback KE, Arntzen CJ (1980) Chloroplast phosphoproteins: regulation of excitation energy transfer by phosphorylation of thylakoid membrane polypeptides. Proc Nat Acad Sci USA 77:5253–5257PubMedCrossRefGoogle Scholar
  6. Bernstein, L, Bosch, P, Canziani, O, Chen, Z, Christ, R, Davidson, O et al (2007) Intergovernmental panel on climate change fourth assessment report. In: Jallow BP, Kajfež-Bogataj L, Bojariu R, Hawkins D, Diaz S, Lee H et al (eds) Climate change 2007 synthesis report. Cambridge University Press, CambridgeGoogle Scholar
  7. Bielewicz S, Bell EM, Kong W, Friedberg I, Priscu JC, Morgan-Kiss RM (2011) Protist diversity in a permanently ice-covered Antarctic lake during the polar night transition. ISME J 5:1559–1564PubMedCrossRefGoogle Scholar
  8. Bonente G, Passarini F, Cazzaniga S, Mancone C, Buia MC, Tripodi M et al (2008) The occurrence of the psbS gene product in Chlamydomonas reinhardtii and in other photosynthetic organisms and its correlation with energy quenching. Photochem Photobiol 84:1359–1370PubMedCrossRefGoogle Scholar
  9. Bredemeijer G, Esselink G (1995) Glucose 6-phosphate dehydrogenase during cold-hardening in Lolium perenne. J Plant Physiol 145:565–569CrossRefGoogle Scholar
  10. Chen Z, He C, Hu H (2012) Temperature responses of growth, photosynthesis, fatty acid and nitrate reductase in Antarctic and temperate Stichococcus. Extremophiles 16:127–133PubMedCrossRefGoogle Scholar
  11. Chintalapati S, Kiran M, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol 50:631PubMedGoogle Scholar
  12. D’Amico S, Claverie P, Collins T, Georlette D, Gratia E, Hoyoux A et al (2002) Molecular basis of cold adaptation. Philos Trans R Soc Lond B Biol Sci 357:917–925PubMedCrossRefGoogle Scholar
  13. D’amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389PubMedCrossRefGoogle Scholar
  14. Demmig-Adams B, Adams WW III (1992) Photoprotection and other responses of plants to high light stress. Ann Rev Plant Physiol Plant Mol Biol 43:599–626CrossRefGoogle Scholar
  15. Demmig-Adams B, Cohu C, Muller O, Adams W (2012) Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth Res 113:75–88PubMedCrossRefGoogle Scholar
  16. Depège N, Bellafiore S, Rochaix J-D (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299:1572–1575PubMedCrossRefGoogle Scholar
  17. Ding Y, Miao J-L, Wang Q-F, Zheng Z, Li G-Y, Jian J-C, Wu Z-H (2007) Purification and characterization of a psychrophilic glutathione reductase from Antarctic ice microalgae Chlamydomonas sp. Strain ICE-L. Polar Biol 31:23–30CrossRefGoogle Scholar
  18. Dolhi JM, Ketchum N, Morgan-Kiss RM (2012) Establishment of microbial eukaryotic enrichment cultures from a chemically stratified antarctic lake and assessment of carbon fixation potential. J Vis Exp 62:e3992Google Scholar
  19. Doran PT, McKay CP, Fountain AG, Nylen T, McKnight DM, Jaros C, Barrett JE (2008) Hydrologic response to extreme warm and cold summers in the McMurdo Dry Valleys, East Antarctica. Ant Sci 20:499–509CrossRefGoogle Scholar
  20. Doyle S, Dieser M, Broemsen E, Christner BC (2011) General characteristics of cold-adapted microorganisms. In: Miller RV, Whyte L (eds) Polar microbiology: life in a deep freeze. ASM Press, Washington, DC, pp 103–125Google Scholar
  21. Ensminger I, Busch F, Huner NPA (2006) Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol Plant 126:28–44CrossRefGoogle Scholar
  22. Falkowski PG, Owens TG (1980) Light–shade adaptation. Plant Physiol 66:592–595PubMedCrossRefGoogle Scholar
  23. Ferrara M, Guerriero G, Cardi M, Esposito S (2013) Purification and biochemical characterisation of a glucose-6-phosphate dehydrogenase from the psychrophilic green alga Koliella antarctica. Extremophiles 17:53–62PubMedCrossRefGoogle Scholar
  24. Fritsen CH, Adams EE, McKay CP, Priscu JC (1988) Permanent ice covers of the McMurdo Dry Valley Lakes, Antarctica: liquid water content. In: Priscu JC (ed) Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica. American Geophysical Union, Washington, DCGoogle Scholar
  25. Gray GR, Chauvin LP, Sarhan F, Huner N (1997) Cold acclimation and freezing tolerance (a complex interaction of light and temperature). Plant Physiol 114:467–474PubMedGoogle Scholar
  26. Gray GR, Ivanov AG, Krol M, Williams JP, Kahn MU, Myscich EG, Huner NP (2005) Temperature and light modulate the trans-Δ3-hexadecenoic acid content of phosphatidylglycerol: light-harvesting complex II organization and non-photochemical quenching. Plant Cell Physiol 46:1272–1282PubMedCrossRefGoogle Scholar
  27. Griffith M, Yaish MW (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9:399–405PubMedCrossRefGoogle Scholar
  28. Honjoh K-I, Mimura A, Kuroiwa E, Hagisako T, Suga K, Shimizu H et al (2003) Purification and characterization of two isoforms of glucose 6-phosphate dehydrogenase (G6PDH) from Chlorella vulgaris C-27. Biosci Biotechnol Biochem 67:1888–1896PubMedCrossRefGoogle Scholar
  29. Hughes MA, Dunn MA (1996) The molecular biology of plant acclimation to low temperature. J Exp Bot 47:291–305CrossRefGoogle Scholar
  30. Hüner NPA, Maxwell DP, Gray GR, Savitch LV, Laudenbach DE, Falk S (1995) Photosynthetic response to light and temperature: PSII excitation pressure and redox signalling. Physiol Plant 17:167–176Google Scholar
  31. Hüner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230CrossRefGoogle Scholar
  32. Hüner NPA, Öquist G, Melis A (2003) Photostasis in plants, green algae and cyanobacteria: the role of light harvesting antenna complexes. In: Green BR, Parson WW (eds) Advances in photosynthesis and respiration light harvesting antennas in photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 401–421CrossRefGoogle Scholar
  33. Jaffri S (2011) Characterization of the photosynthetic apparatus of Chlorella BI sp., an Antarctic mat alga under varying trophic growth states. In: Microbiol. Miami University, OxfordGoogle Scholar
  34. Janech MG, Krell A, Mock T, Kang JS, Raymond JA (2006) Ice-binding proteins from sea ice diatoms (Bacillariophyceae). J Phycol 42:410–416CrossRefGoogle Scholar
  35. Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5:365–374CrossRefGoogle Scholar
  36. Joanisse D, Storey K (1994) Enzyme activity profiles in an overwintering population of freeze-tolerant larvae of the gall fly, Eurosta solidaginis. J Comp Physiol B 164:247–255CrossRefGoogle Scholar
  37. Jungblut AD, Vincent WF, Lovejoy C (2012) Eukaryotes in Arctic and Antarctic cyanobacterial mats. FEMS Microbiol Ecol 82:416–428PubMedCrossRefGoogle Scholar
  38. Kong W, Ream DC, Priscu JC, Morgan-Kiss RM (2012) Diversity and expression of RubisCO genes in a perennially ice-covered lake during the polar night transition. Appl Environ Microbiol 78:4358–4366PubMedCrossRefGoogle Scholar
  39. Krell A, Funck D, Plettner I, John U, Dieckmann G (2007) Regulation of proline metabolism under salt stress in the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae). J Phycol 43:753–762CrossRefGoogle Scholar
  40. Krembs C, Gradinger R, Spindler M (2000) Implications of brine channel geometry and surface area for the interaction of sympagic organisms in Arctic sea ice. J Exp Mar Biol Ecol 243:55–80CrossRefGoogle Scholar
  41. Lee JK, Park KS, Park S, Park H, Song YH, Kang S-H, Kim HJ (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiol 60:222–228CrossRefGoogle Scholar
  42. Liska AJ, Shevchenko A, Pick U, Katz A (2004) Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol 136:2806–2817PubMedCrossRefGoogle Scholar
  43. Lizotte MP, Priscu JC (1992) Photosynthesis-irradiance relationships in phytoplankton from the physically stable water column of a perennially ice-covered lake (Lake Bonney, Antarctica). J Phycol 28:179–185CrossRefGoogle Scholar
  44. Lizotte MP, Sharp TR, Priscu JC (1996) Phytoplankton dynamics in the stratified water column of Lake Bonney, Antarctica. I. Biomass and productivity during the winter-spring transition. Polar Biol 16:155–162CrossRefGoogle Scholar
  45. Lopez-Garcia P, Rodriguez-Valera F, Pedros-Alio C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Lett Nat 409:603–607CrossRefGoogle Scholar
  46. Loppes R, Devos N, Willem S, Barthelemy P, Matagne RF (1996) Effect of temperature on two enzymes from a psychrophilic Chloromonas (Chlorophyta). J Phycol 32:276–278CrossRefGoogle Scholar
  47. Lovejoy C, Massana R, Pedros-Alio C (2006) Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl Environ Microbiol 72:3085–3095PubMedCrossRefGoogle Scholar
  48. Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361PubMedCrossRefGoogle Scholar
  49. Maxwell DP, Falk S, Trick CG, Huner NPA (1994) Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol 105:535–543PubMedGoogle Scholar
  50. Maxwell DP, Falk S, Huner N (1995a) Photosystem II excitation pressure and development of resistance to photoinhibition (I. light-harvesting complex II abundance and zeaxanthin content in Chlorella vulgaris). Plant Physiol 107:687–694PubMedGoogle Scholar
  51. Maxwell DP, Laudenbach DE, Huner N (1995b) Redox regulation of light-harvesting complex II and cab mRNA abundance in Dunaliella salina. Plant Physiol 109:787–795PubMedGoogle Scholar
  52. Miskiewicz E, Ivanov AG, Williams JP, Khan MU, Falk S, Huner NP (2000) Photosynthetic acclimation of the filamentous cyanobacterium, Plectonema boryanum UTEX 485, to temperature and light. Plant Cell Physiol 41:767–775PubMedCrossRefGoogle Scholar
  53. Miskiewicz E, Ivanov AG, Huner NP (2002) Stoichiometry of the photosynthetic apparatus and phycobilisome structure of the cyanobacterium Plectonema boryanum UTEX 485 are regulated by both light and temperature. Plant Physiol 130:1414–1425PubMedCrossRefGoogle Scholar
  54. Morgan RM, Ivanov AG, Priscu JC, Maxwell DP, Hüner NPA (1998) Structure and composition of the photochemical apparatus of the Antarctic green alga, Chlamydomonas subcaudata. Photosynth Res 56:303–314CrossRefGoogle Scholar
  55. Morgan-Kiss RM, Dolhi JM (2011) Microorganisms and plants: a photosynthetic perspective. In: Tanino K, Storey K (eds) Nature at risk: temperature adaptation in a changing climate. CABI, Wallingford, pp 24–44CrossRefGoogle Scholar
  56. Morgan-Kiss R, Ivanov AG, Williams J, Mobashsher K, Hüner NP (2002a) Differential thermal effects on the energy distribution between photosystem II and photosystem I in thylakoid membranes of a psychrophilic and a mesophilic alga. Biochim Biophys Acta 1561:251–265PubMedCrossRefGoogle Scholar
  57. Morgan-Kiss RM, Ivanov AG, Hüner NPA (2002b) The Antarctic psychrophile, Chlamydomonas subcaudata, is deficient in state I-state II transitions. Planta 214:435–445PubMedCrossRefGoogle Scholar
  58. Morgan-Kiss RM, Ivanov AG, Pocock T, Król M, Gudynaite-Savitch L, Hüner NPA (2005) The Antarctic psychrophile, Chlamydomonas raudensis Ettl (UWO241) (CHLOROPHYCEAE, CHLOROPHYTA) exhibits a limited capacity to photoacclimate to red light. J Phycol 41:791–800CrossRefGoogle Scholar
  59. Morgan-Kiss RM, Priscu JP, Pocock T, Gudynaite-Savitch L, Hüner NPA (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70:222–252PubMedCrossRefGoogle Scholar
  60. Morgan-Kiss RM, Ivanov A, Modla S, Cyzmmek K, Huner NPA, Priscu JC, Hanson TE (2008) Identity and phylogeny of a new psychrophilic eukaryotic green alga, Chlorella sp. strain BI isolated from a transitory pond near Bratina Island, Antarctica. Extremophiles 12:701–711PubMedCrossRefGoogle Scholar
  61. Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421PubMedCrossRefGoogle Scholar
  62. Napolitano MJ, Shain DH (2004) Four kingdoms on glacier ice: convergent energetic processes boost energy levels as temperatures fall. Proc R Soc Lond B 271:273–276CrossRefGoogle Scholar
  63. Napolitano MJ, Shain DH (2005) Distinctions in adenylate metabolism among organisms inhabiting temperature extremes. Extremophiles 9:93–98PubMedCrossRefGoogle Scholar
  64. Neale PJ, Priscu JC (1995) The photosynthetic apparatus of phytoplankton from a perennially ice-covered Antarctic lake: acclimation to an extreme shade environment. Plant Cell Physiol 36:253–263Google Scholar
  65. Parry BR, Shain DH (2011) Manipulations of AMP metabolic genes increase growth rate and cold tolerance in Escherichia coli: implications for psychrophilic evolution. Mol Biol Evol 28:2139–2145PubMedCrossRefGoogle Scholar
  66. Parry MA, Keys AJ, Madgwick PJ, Carmo-Silva AE, Andralojc PJ (2008) Rubisco regulation: a role for inhibitors. J Exp Bot 59:1569–1580PubMedCrossRefGoogle Scholar
  67. Pocock T (2004) Phylogeny, photoinhibition and recovery of a new Antarctic psychrophile Chlamydomonas raudensis (UWO 241). In: Biology. University of Western Ontario, LondonGoogle Scholar
  68. Pocock T, Lachance M-A, Proschold T, Priscu JC, Kim S, Huner NPA (2004) Identification of a psychrophilic green alga from Lake Bonney Antarctica: Chlamydomonas raudensis ETTL. (UWO 241) (Chlorophyceae). J Phycol 40:1138–1148CrossRefGoogle Scholar
  69. Pocock T, Koziak A, Rosso D, Falk S, Huner HPA (2007) Chlamydomonas raudensis ettl. (UWO241) exhibits the capacity for rapid D1 repair in response to chronic photoinhibition at low temperature. J Phycol 43:924–936CrossRefGoogle Scholar
  70. Pocock T, Vetterli A, Falk S (2011) Evidence for phenotypic plasticity in the Antarctic extremophile Chlamydomonas raudensis Ettl. UWO 241. J Exp Bot 62:1169–1177PubMedCrossRefGoogle Scholar
  71. Possmayer M, Berardi G, Beall BFN, Trick CG, Hüner NPA, Maxwell DP (2011) Plasticity of the psychrophilic green alga Chlamydomonas raudensis (UWO 241) (Chlorophyta) to supraoptimal temperature stress. J Phycol 47:1098–1109CrossRefGoogle Scholar
  72. Priscu JC (1995) Phytoplankton nutrient deficiency in lakes of the McMurdo Dry Valleys, Antarctica. Freshw Biol 34:215–227CrossRefGoogle Scholar
  73. Priscu JC, Palmisano AC, Priscu LR, Sullivan CW (1989) Temperature dependence of inorganic nitrogen uptake and assimilation in Antarctic sea-ice microalgae. Polar Biol 9:442–446CrossRefGoogle Scholar
  74. Priscu JC, Fritsen CH, Adams EE, Giovannoni SJ, Paerl HW, McKay CP et al (1998) Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280:2095–2098PubMedCrossRefGoogle Scholar
  75. Raymond JA, Kim HJ (2012) Possible role of horizontal gene transfer in the colonization of sea ice by algae. PLoS ONE 7:e35968PubMedCrossRefGoogle Scholar
  76. Raymond JA, Morgan-Kiss R (2013) Separate origins of ice-binding proteins in Antarctic Chlamydomonas species. PLoS ONE 8:e59186PubMedCrossRefGoogle Scholar
  77. Raymond JA, Janech MG, Fritsen CH (2009) Novel ice-binding proteins from a psychrophilic Antarctic alga (Chlamydomonadaceae, Chlorophyceae). J Phycol 45:130–136CrossRefGoogle Scholar
  78. Rigano M, Vona V, Lobosco O, Carillo P, Rigano C (2006) Temperature dependence of nitrate reductase in the psychrophilic unicellular alga Koliella antarctica and the mesophilic alga Chlorella sorokiniana. Plant Cell Environ 29:1400–1409PubMedCrossRefGoogle Scholar
  79. Sage RF, Way DA, Kubien DS (2008) Rubisco, Rubisco activase, and global climate change. J Exp Bot 59:1581–1595PubMedCrossRefGoogle Scholar
  80. Siglioccolo A, Gerace R, Pascarella S (2010) “Cold spots” in protein cold adaptation: insights from normalized atomic displacement parameters (B′-factors). Biophys Chem 153:104–114PubMedCrossRefGoogle Scholar
  81. Szyszka B, Ivanov AG, Huner NPA (2007) Psychrophily induces differential energy partitioning, photosystem stoichiometry and polypeptide phosphorylation in Chlamydomonas raudensis. Biochim Biophys Acta 1767:789–800PubMedCrossRefGoogle Scholar
  82. Takizawa K, Takahashi S, Huner NPA, Minagawa J (2009) Salinity effects the photoacclimation of Chlamydomonas raudensis Ettl UWO241. Photosynth Res 99:195–203PubMedCrossRefGoogle Scholar
  83. Williamson CE, Saros JE, Schindler DW (2009) Climate change: sentinels of change. Science 323:887–888PubMedCrossRefGoogle Scholar
  84. Wilson KE, Ivanov AG, Oquist G, Grodzinski B, Sarhan F, Huner NPA (2006) Energy balance, organellar redox status and acclimation to environmental stress. Can J Bot 84:1355–1370CrossRefGoogle Scholar
  85. Wollman FA (2001) State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J 20:3623–3630PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Jenna M. Dolhi
    • 1
  • Denis P. Maxwell
    • 2
  • Rachael M. Morgan-Kiss
    • 1
  1. 1.Department of MicrobiologyMiami UniversityOxfordUSA
  2. 2.Department of BiologyWestern UniversityLondonCanada

Personalised recommendations