Halomonas socia sp. nov., isolated from high salt culture of Dunaliella salina

Abstract

A moderately halophilic bacteria designed strain NY-011T was isolated from the high salt culture of Dunaliella salina in Chengdu of Sichuan Province, China. The isolate was Gram-negative, nonmotile, rod-shaped and 12.5–21.6 μm in length. Colonies on solid media are circular, wet, smooth and cream. The strain grew optimally at 37 °C, pH 7.0 and in the presence of 8 % NaCl. Acid was produced from glycerol, d-arabinose, glucose, trehalose, inositol, mannose, mannitol, sucrose, maltose and sorbitol. Catalase is produced but not oxidase. The major fatty acids are C18: 1ω7c (37.59 %), C19: 0 cyclo ω8c (18.29 %), C16: 0 (16.05 %) and C6: 0 (12.43 %). The predominant respiratory lipoquinone found in strain NY-011T is ubiquinone with nine isoprene units (Q-9). The genomic DNA G + C content of strain NY-011T was 62.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain NY-011T belonged to the genus Halomonas. The highest levels of 16S rRNA gene sequence similarity were found between the strain NY-011T and H. pantelleriensis (sequence similarity 98.43 %). However, the levels of DNA–DNA relatedness between them were only 23.1 %. In addition, the strain NY-011T had a phenotypic profile that readily distinguished it from H. pantelleriensis. The strain NY-011T therefore represents a new species of the genus Halomonas, for which the name Halomonas socia sp. nov. is proposed, with NY-011T (=CCTCC AB 2011033T = KCTC 23671T) as the type strain.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Arahal DR, Ventosa A (2006) The family Halomonadaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes A handbook on the biology of bacteria, vol. 6, 3rd edn. Springer, New York, pp 811–835

    Google Scholar 

  2. Arahal DR, Vreeland RH, Litchfield CD, Mormile MR, Tindall BJ, Oren A, Bejar V, Quesada E, Ventosa A (2007) Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int J Syst Evol Microbiol 57:2436–2446

    PubMed  Article  CAS  Google Scholar 

  3. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230

    PubMed  Article  CAS  Google Scholar 

  4. Cui XL, Mao PH, Tseng M, Li WJ, Zhang LP, Xu LH, Jiang CL (2001) Streptomonospora salina gen. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 51:357–363

    PubMed  CAS  Google Scholar 

  5. De la Haba RR, Arahal DR, Márquez MC, Ventosa A (2010) Phylogenetic relationships within the family Halomonadaceae based on comparative 23S and 16S rRNA gene sequence analysis. Int J Syst Evol Microbiol 60:737–748

    PubMed  Article  Google Scholar 

  6. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    PubMed  Article  Google Scholar 

  7. Dobson SJ, Franzmann PD (1996) Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons, 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int J Syst Bacteriol 46:550–558

    Article  CAS  Google Scholar 

  8. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–789

    Article  Google Scholar 

  9. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  10. Franzmann PD, Wehmeyer U, Stackebrandt E (1988) Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst Appl Microbiol 11:16–19

    Article  Google Scholar 

  11. Grant WD, Kamekura M, McGenity TJ, Ventosa A (2001) Class III Halobacteria class. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol. 1, 2nd edn. Springer, New York, pp 294–334

    Google Scholar 

  12. Groth I, Schumann P, Rainey FA, Martin K, Schuetze B, Augsten K (1997) Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 47:1129–1133

    PubMed  Article  CAS  Google Scholar 

  13. Guan TW, Xiao J, Zhao K, Luo XX, Zhang XP, Zhang LL (2010) Halomonas xinjiangensis sp. nov., a halotolerant bacterium isolated from a salt lake in Xinjiang. China. Int J Syst Evol Microbiol 60:349–352

    Article  CAS  Google Scholar 

  14. Huss V, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192

    PubMed  Article  CAS  Google Scholar 

  15. Jahnke KD (1992) BASIC computer program for evaluation of spectroscopic DNA renaturation data from Gilford System 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73

    Google Scholar 

  16. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    PubMed  Article  CAS  Google Scholar 

  17. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    PubMed  Article  CAS  Google Scholar 

  18. Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    PubMed  Article  CAS  Google Scholar 

  19. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  20. Mata JA, Martínez-Cánovas MJ, Quesada E, Béjar V (2002) A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375

    PubMed  Article  CAS  Google Scholar 

  21. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  22. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrate procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  23. Okamoto T, Taguchi H, Nakamura K, Ikenaga H, Kuraishi H, Yamasato K (1993) Zymobacter palmae gen. nov., sp. nov., a new ethanol-fermenting peritrichous bacterium isolated from palm sap. Arch Microbiol 160:333–337

    PubMed  Article  CAS  Google Scholar 

  24. Pick U, Karni L, Avron M (1986) Determination of ion content and ion fluxes in the halotolerant alga Dunaliella salina. Plant Physiol 81:92–96

    PubMed  Article  CAS  Google Scholar 

  25. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  26. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI technical note 101. IDI Inc., Newyork

    Google Scholar 

  27. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    PubMed  Article  CAS  Google Scholar 

  28. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266

    PubMed  Article  CAS  Google Scholar 

  29. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    PubMed  CAS  Google Scholar 

  30. Vreeland RH, Litchfield CD, Martin EL, Elliot E (1980) Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495

    Article  CAS  Google Scholar 

  31. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the College of Life Sciences, Zhejiang University, and Dr. Agata Gambacorta for providing the reference strains. This work was supported by grants from the National Natural Science Foundation of China (Nos.: 30500006, 30970043).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lin-Han Bai.

Additional information

Jiao Cao and Huai-Yuan Ma are co-first authors.

Communicated by A. Oren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 993 kb)

Supplementary material 2 (DOC 303 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cao, J., Ma, HY., Li, HY. et al. Halomonas socia sp. nov., isolated from high salt culture of Dunaliella salina . Extremophiles 17, 663–668 (2013). https://doi.org/10.1007/s00792-013-0549-1

Download citation

Keywords

  • Halomonas
  • Halophilic bacteria
  • Dunaliella salina
  • Taxonomy
  • Hypersaline