Skip to main content
Log in

Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in Romania

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The diversity of archaea and bacteria was investigated in two slightly alkaline, mesophilic hot springs from the Western Plain of Romania. Phylogenetic analysis showed a low diversity of Archaea, only three Euryarchaeota taxa being detected: Methanomethylovorans thermophila, Methanomassiliicoccus luminyensis and Methanococcus aeolicus. Twelve major bacterial groups were identified, both springs being dominated by Cyanobacteria, Chloroflexi and Proteobacteria. While at the phylum/class-level the microbial mats share a similar biodiversity; at the species level the geothermal springs investigated seem to be colonized by specific consortia. The dominant taxa were filamentous heterocyst-containing Fischerella, at 45 °C and non-heterocyst Leptolyngbya and Geitlerinema, at 55 °C. Other bacterial taxa (Thauera sp., Methyloversatilis universalis, Pannonibacter phragmitetus, Polymorphum gilvum, Metallibacterium sp. and Spartobacteria) were observed for the first time in association with a geothermal habitat. Based on their bacterial diversity the two mats were clustered together with other similar habitats from Europe and part of Asia, most likely the water temperature playing a major role in the formation of specific microbial communities that colonize the investigated thermal springs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abildgaard L, Nielsen MB, Kjeldsen KU, Ingvorsen K (2006) Desulfovibrio alkalitolerans sp. nov., a novel alkalitolerant, sulphate-reducing bacterium isolated from district heating water. Int J Syst Evol Microbiol 56(5):1019–1024

    Article  PubMed  CAS  Google Scholar 

  • Albuquerque L, Rainey FA, Nobre MF, da Costa MS (2011) Schleiferia thermophila gen. nov., sp. nov., a slightly thermophilic bacterium of the phylum ‘Bacteroidetes’ and the proposal of Schleiferiaceae, fam. nov. Int J Syst Evol Microbiol 61(10):2450–2455

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    PubMed  CAS  Google Scholar 

  • Anders HJ, Kaetzke A, Kämpfer P, Ludwig W, Fuchs G (1995) Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol 45(2):327–333

    Article  PubMed  CAS  Google Scholar 

  • Baena S, Fardeau ML, Woo TH, Ollivier B, Labat M, Patel BK (1999) Phylogenetic relationships of three amino-acid-utilizing anaerobes, Selenomonas acidaminovorans, ‘Selenomonas acidaminophila’ and Eubacterium acidaminophilum, as inferred from partial 16S rDNA nucleotide sequences and proposal of Thermanaerovibrio acidaminovorans gen. nov., comb. nov. and Anaeromusa acidaminophila gen. nov., comb. nov. Int J Syst Bacteriol 49:969–974

    Article  PubMed  CAS  Google Scholar 

  • Bahl J, Lau MC, Smith GJ, Vijaykrishna D, Cary SC, Lacap DC, Lee CK, Papke RT, Warren-Rhodes KA, Wong FK, McKay CP, Pointing SB (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2:163

    Article  PubMed  Google Scholar 

  • Baker GC, Gaffar S, Cowan DA, Suharto AR (2001) Bacterial community analysis of Indonesian hot springs. FEMS Microbiol Lett 200(1):103–109

    Article  PubMed  CAS  Google Scholar 

  • Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG, Walters WA, Knight R, Fierer N (2011) The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol Biochem 43:1450–1455

    Article  PubMed  CAS  Google Scholar 

  • Borsodi AK, Micsinai A, Kovács G, Tóth E, Schumann P, Kovács AL, Böddi B, Márialigeti K (2003) Pannonibacter phragmitetus gen. nov., sp. nov., a novel alkalitolerant bacterium isolated from decomposing reed rhizomes in a Hungarian soda lake. Int J Syst Evol Microbiol 53(2):555–561

    Article  PubMed  CAS  Google Scholar 

  • Bryanskaya AV, Namsaraev ZB, Kalashnikova OM, Barkhutova DD, Namsaraev BB, Gorlenko VM (2006) Biogeochemical processes in the algal–bacterial mats of the Urinskii alkaline hot spring. Microbiology 75:611–620

    Article  CAS  Google Scholar 

  • Cai M, Wang L, Cai H, Li Y, Tang YQ, Wu XL (2011) Rubrimonas shengliensis sp. nov. and Polymorphum gilvum gen. nov., sp. nov., novel members of Alphaproteobacteria from crude oil contaminated saline soil. Syst Appl Microbiol 34(5):321–327

    Article  PubMed  CAS  Google Scholar 

  • Chapelle FH, O’Neill K, Bradley PM, Methe BA, Ciufo SA, Knobel LL, Lovley DL (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312–315

    Article  PubMed  Google Scholar 

  • Chen TL, Chou YJ, Che WM, Arun B, Young CC (2006) Tepidimonas taiwanensis sp. nov., a novel alkaline-protease-producing bacterium isolated from a hot spring. Extremophiles 10(1):35–40

    Article  PubMed  CAS  Google Scholar 

  • Christensen P, Cook FD (1978) Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol 28(3):367–393

    Article  Google Scholar 

  • Cohen Y (1989) Photosynthesis in cyanobacterial mats and its relation to the sulful cycle: a model for microbial sulfur interactions. In: Cohen Y, Rosenberg E (eds) Microbial mats: physiiological ecology of benthic microbial communities. American Society for Microbiology, Washington, pp 22–36

    Google Scholar 

  • Coman C, Bica A, Drugă B, Barbu-Tudoran L, Dragoş N (2011) Methodological constraints in the molecular biodiversity study of a thermomineral spring cyanobacterial mat: a case study. Anton Leeuw Int J G 92:271–281

    Article  Google Scholar 

  • Coman C, Bica A, Drugă B, Barbu-Tudoran L, Dragoş N (2012) A microbial mat developed around a man-made geothermal spring from Romania: structure and cyanobacterial composition. In: Noffke N, Chafetz H (eds) Microbial mats in siliciclastic depositional systems through time, SEPM (Society for Sedimentary Geology) special publication 101, pp 47–53

  • Costa KC, Navarro JB, Shock EL, Zhang CL, Soukup D, Hedlund BP (2009) Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin. Extremophiles 13(3):447–459

    Article  PubMed  CAS  Google Scholar 

  • Da Costa MS, Rainey FA, Nobre MF (2006) The genus Thermus and relatives. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackenbrandt E (eds) The prokaryotes: a handbook on the biology of microorganisms. Springer, New York, pp 797–812

    Google Scholar 

  • De Philippis R, Margheri MC, Materassi R, Vincenzini M (1998) Potential of unicellular cyanobacteria from saline environments as exopolysaccharide producers. Appl Environ Microbiol 64(3):1130–1132

    PubMed  Google Scholar 

  • Debnath M, Mandal NC, Ray S (2009) The Study of cyanobacterial flora from geothermal springs of Bakreswar, West Bengal, India. Algae 24(4):185–193

    Article  Google Scholar 

  • Donkor V, Hader DP (1991) Effects of solar and ultraviolet radiation on motility, photomovement and pigmentation in filamentous, gliding cyanobacteria. FEMS Microbiol Lett 86:159–168

    Article  Google Scholar 

  • Donkor V, Amewowor D, Hader DP (1993) Effects of tropical solar radiation on the motility of filamentous cyanobacteria. FEMS Microbiol Ecol 12:143–148

    Article  Google Scholar 

  • Dridi B, Fardeau M-L, Ollivier B, Raoult D, Drancourt M (2012) Methanomassiliicoccus luminyensis gen nov, sp nov, a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62(8):1902–1907

    Article  PubMed  CAS  Google Scholar 

  • Ţenu A, Constantinescu T, Davidescu F, Nuti S, Noto P, Squarci P (1981) Research on the thermal waters of the Western Plain of Romania. Geothermics 10(1):1–28

    Article  Google Scholar 

  • Foss S, Harder J (1998) Thauera linaloolentis sp. nov. and Thauera terpenica sp. nov., isolated on oxygen-containing monoterpenes (linalool, menthol, and eucalyptol) nitrate. Syst Appl Microbiol 21(3):365–373

    Article  PubMed  CAS  Google Scholar 

  • França L, Rainey FA, Nobre MF, da Costa MS (2006) Tepidicella xavieri gen. nov., sp. nov., a betaproteobacterium isolated from a hot spring runoff. Int J Syst Evol Microbiol 56(4):907–912

    Article  PubMed  Google Scholar 

  • Grégoire P, Bohli M, Cayol JL, Joseph M, Guasco S, Dubourg K, Cambar J, Michotey V, Bonin P, Fardeau ML, Ollivier B (2011a) Caldilinea tarbellica sp. nov., a filamentous, thermophilic, anaerobic bacterium isolated from a deep hot aquifer in the Aquitaine Basin. Int J Syst Evol Microbiol 61(6):1436–1441

    Article  PubMed  Google Scholar 

  • Grégoire P, Fardeau ML, Joseph M, Guasco S, Hamaide F, Biasutti S, Michotey V, Bonin P, Ollivier B (2011b) Isolation and characterization of Thermanaerothrix daxensis gen nov, sp nov, a thermophilic anaerobic bacterium pertaining to the phylum “Chloroflexi”, isolated from a deep hot aquifer in the Aquitaine Basin. Syst Appl Microbiol 34(7):494–497

    Article  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hayashi NR, Peeraporpisal Y, Nishihara H, Ishii M, Igrashi Y, Kodama T (1994) Isolation and cultivation of thermophilic cyanobacteria from hot-springs of northern Thailand. J Ferment Bioeng 78(2):179–181

    Article  Google Scholar 

  • Hreggvidsson GO, Skirnisdottir S, Smit B, Hjorleifsdottir S, Marteinsson VT, Petursdottir S, Kristjansson JK (2006) Polyphasic analysis of Thermus isolates from geothermal areas in Iceland. Extremophiles 10(6):563–575

    Article  PubMed  CAS  Google Scholar 

  • Huang Q, Dong CZ, Dong RM, Jiang H, Wang S, Wang G, Fang B, Ding X, Niu L, Li X, Zhang C, Dong H (2011) Archaeal and bacterial diversity in hot springs on the Tibetan Plateau, China. Extremophiles 15:549–563

    Article  PubMed  Google Scholar 

  • Jaspers E, Overmann J (2004) Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in Bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol 70:4831–4839

    Article  PubMed  CAS  Google Scholar 

  • Jiang B, Parshina S, van Doesburg W, Stams A (2005) Methanomethylovorans thermophila sp nov, a thermophilic, methylotrophic methanogen from an anaerobic reactor fed with methanol. Int J Syst Evol Microbiol 55(6):2465–2470

    Article  PubMed  CAS  Google Scholar 

  • Jones B, Renaut RW (2007) Selective mineralization of microbes in Fe-rich precipitate (jarosite, hydrous ferric oxides) from acid hot springs in the Waiotapu geothermal area, North Island, New Zealand. Sed Geol 194:77–98

    Article  CAS  Google Scholar 

  • Jørgensen BB, Nelson CN (1988) Bacterial zonation, photosynthesis, and spectral light distrbution in hot spring mirobial mats of Iceland. Microbial Ecol 16:133–147

    Article  Google Scholar 

  • Kalyuzhnaya MG, De Marco P, Bowerman S, Pacheco CC, Lara JC, Lidstrom ME, Chistoserdova L (2006) Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates. Int J Syst Evol Microbiol 56(11):2517–2522

    Article  PubMed  CAS  Google Scholar 

  • Kanokratana P, Chanapan S, Pootanakit K, Eurwilaichitr L (2004) Diversity and abundance of bacteria and archaea in the Bor Khlueng hot spring in Thailand. J Basic Microbiol 44(6):430–444

    Article  PubMed  Google Scholar 

  • Kasting JK, Howard MT (2006) Atmospheric composition and climate on the early Earth. Philos T R SOC B 361:1733–1742

    Article  CAS  Google Scholar 

  • Kastovsky J, Johansen JR (2008) Mastigocladus laminosus (Stigonematales, Cyanobacteria): phylogenetic relationship of strains from thermal springs to soil-inhabiting genera of the order and taxonomic implications for the genus. Phycologia 47(3):307–320

    Article  CAS  Google Scholar 

  • Kemp PF, Aller JY (2004) Estimating prokaryotic diversity: when are 16S rDNA libraries large enough? Limnol Oceanogr Methods 2:114–125

    Article  Google Scholar 

  • Kendall MM, Liu Y, Boone DR (2006) Methanococcus aeolicus sp nov, a mesophilic, methanogenic archaeon from shallow and deep marine sediments. Int J Syst Evol Microbiol 56(7):1525–1529

    Article  PubMed  CAS  Google Scholar 

  • Khavarpour M, Najafpour GD, Ghoreyshi A–A, Jahanshahi M, Bambai B (2011) Enhanced Fe2+ oxidation by mixed culture originated from hot spring: application of response surface method. African J Biotech 10(19):3769–3783

    CAS  Google Scholar 

  • Kielak A, Rodrigues JLM, Kuramae EE, Chain PSG, van Veen JA, Kowalchuk GA (2010) Phylogenetic and metagenomic analysis of Verrucomicrobia in former agricultural grassland soil. FEMS Microbiol Ecol 71:23–33

    Article  PubMed  CAS  Google Scholar 

  • Klatt CG, Wood JM, Rusch DB, Bateson MM, Hamamura N, Heidelberg JF, Grossman AR, Bhaya D, Cohan FM, Kühl M, Bryant DA, Ward DM (2011) Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential. ISME J 5(8):1262–1278

    Article  PubMed  CAS  Google Scholar 

  • Konhauser K (2007) Introduction to Geomicrobiology, Blackwell Publishing, Oxford

  • Lacap DC, Smith GJ, Warren-Rhodes K, Pointing SB (2005) Community structure of free-floating filamentous cyanobacterial mats from the Wonder Lake geothermal springs in the Philippines. Can J Microbiol 51(7):583–589

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley & Sons, New York, pp 115–175

    Google Scholar 

  • Langmuir D (1997) Aqueous Environmental Geochemistry. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Lau MCY, Pointing SB (2009) Vertical partitioning and expression of primary metabolic genes in a thermophilic microbial mat. Extremophiles 13(3):533–540

    Article  PubMed  Google Scholar 

  • Lau MCY, Aitchison JC, Pointing SB (2009) Bacterial community composition in thermophilic microbial mats from five hot springs in central Tibet. Extremophiles 13(1):139–149

    Article  PubMed  Google Scholar 

  • Mackenzie R, Pedrós-Alió C, Díez B (2013) Bacterial composition of microbial mats in hot springs in Northern Patagonia: variations with seasons and temperature. Extremophiles 17(1):123–136

    Article  PubMed  Google Scholar 

  • Macy JM, Rech S, Auling G, Dorsch M, Stackebrandt E, Sly LI (1993) Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. Int J Syst Bacteriol 43(1):135–142

    Article  PubMed  CAS  Google Scholar 

  • Madigan MT (2003) Anoxygenic phototrophic bacteria from extreme environments. Photosynth Res 76:157–171

    Article  PubMed  CAS  Google Scholar 

  • McGregor GB, Rasmussen JP (2008) Cyanobacterial composition of microbial mats from an Australian thermal spring: a polyphasic evaluation. FEMS Microbiol Ecol 63(1):23–35

    Article  PubMed  CAS  Google Scholar 

  • Mechichi T, Stackebrandt E, Gad’on N, Fuchs G (2002) Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov. Arch Microbiol 178(1):26–35

    Article  PubMed  CAS  Google Scholar 

  • Miller SR, Castenholz RW, Pedersen D (2007) Phylogeography of the thermophilic cyanobacterium Mastigocladus laminosus. Appl Environ Microbiol 73:4751–4759

    Article  PubMed  CAS  Google Scholar 

  • Miseta R, Palatinszky M, Makk J, Marialigeti K, Borsodi AK (2012) Phylogenetic diversity of bacterial communities associated with sulfurous karstic well waters of a hungarian spa. Geomicrobiol J 29(2):101–113

    Article  Google Scholar 

  • Moro I, Rascio N, La Rocca N, Sciuto K, Albertano P, Bruno L, Andreoli C (2010) Polyphasic characterization of a thermo-tolerant filamentous cyanobacterium isolated from the Euganean thermal muds (Padua, Italy). Eur J Phycol 45(2):143–154

    Article  CAS  Google Scholar 

  • Namsaraev ZB, Gorlenko VM, Namsaraev BB, Buryukhaev SP, Yurkov VV (2003) The structure and biogeochemical activity of the phototrophic communities from the Bol’sherechenskii alkaline hot spring. Microbiology 72:193–202

    Article  CAS  Google Scholar 

  • Nobre MF, da Costa MS (2001) Genus II Meiothermus. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 414–420

    Google Scholar 

  • Noffke N, Beukes N, Bower D, Hazen RM, Swift DJP (2008) An actualistic perspective into Archean worlds-(cyano-)bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Ga Pongola Supergroup. South Africa. Geobiol 6:5–20

    CAS  Google Scholar 

  • Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332

    PubMed  Google Scholar 

  • Osanjo GO, Muthike EW, Tsuma L, Okoth MW, Bulimo WD, Lünsdorf H, Abraham W-R, Dion M, Timmis KN, Golyshin PN, Mulaa FJ (2009) A salt lake extremophile, Paracoccus bogoriensis sp nov, efficiently produces xanthophyll carotenoids. Afr J Microbiol Res 3(8):426–433

    CAS  Google Scholar 

  • Pagaling E, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2012) Bacterial and archaeal diversity in two hot spring microbial mats from the geothermal region of Tengchong, China. Extremophiles 16:607–618

    Article  PubMed  Google Scholar 

  • Pentecost A (1995) The Quaternary travertine deposits of Europe and Asia Minor Quaternary. Sci Rev 14:1005–1028

    Article  Google Scholar 

  • Pentecost A, Coletta P (2004) A note on the travertines of Suio, Roccamonfina, with reference to their microbial communities and geochemical origins. Geol Rom 37:109–112

    Google Scholar 

  • Pepe-Ranney C, Berelson WM, Corsetti FA, Treants M, Spear JR (2012) Cyanobacterial construction of hot spring siliceous stromatolites in Yellowstone National Park. Environ Microbiol 14(5):1182–1197

    Article  PubMed  CAS  Google Scholar 

  • Pires AL, Albuquerque L, Tiago I, Nobre MF, Empadinhas N, Veríssimo A, da Costa MS (2005) Meiothermus timidus sp. nov., a new slightly thermophilic yellow-pigmented species. FEMS Microbiol Lett 245(1):39–45

    Article  PubMed  CAS  Google Scholar 

  • Porat I, Vishnivetskaya TA, Mosher JJ, Brandt CC, Yang ZK, Brooks SC, Liang L, Drake MM, Podar M, Brown SD, Palumbo AV (2010) Characterization of archaeal community in contaminated and uncontaminated surface stream sediments. Microb Ecol 60(4):784–795

    Article  PubMed  Google Scholar 

  • Portillo MC, Sririn V, Kanoksilapatham W, Gonzalez JM (2009) Differential microbial communities in hot spring mats from Western Thailand. Extremophiles 13:321–331

    Article  PubMed  CAS  Google Scholar 

  • Posada D (2003) jModelTest: phylogenetic model averaging. Mol Evol Biol 25:1253–1256

    Article  Google Scholar 

  • Radway JC, Weissman J, Wilde EW, Benemann JR (1992) Exposure of Fischerella [Mastigocladus] to high and low temperature extremes: strain evaluation for a thermal mitigation process. J Appl Phycol 4:67–77

    Article  Google Scholar 

  • Roeselers G, Norris TB, Castenholz RW, Rysgaard S, Glud RN, Kühl M, Muyzer G (2007) Diversity of phototrophic bacteria in microbial mats from Arctic hot springs (Greenland). Environ Microbiol 9(1):26–38

    Article  PubMed  CAS  Google Scholar 

  • Rogers KL, Amend JP (2006) Energetics of potential heterotrophic metabolisms in the marine hydrothermal system of Vulcano Island, Italy. Geochim Cosmochim Ac 70:6180–6200

    Article  CAS  Google Scholar 

  • Sangwan P, Chen X, Hugenholtz P, Janssen PH (2004) Chtoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Appl Environ Microbiol 70:5857–5881

    Article  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71(3):1501–1506

    Google Scholar 

  • Schopf JW (2002) The fossil record: tracing the roots of the cyanobacterial lineage. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Their diversity in time and space. Kluwer, New York, pp 1–17

    Google Scholar 

  • Sekiguchi Y, Yamada T, Hanada S, Ohashi A, Harada H, Kamagata Y (2003) Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. Int J Syst Evol Microbiol 53(6):1843–1851

    Article  PubMed  CAS  Google Scholar 

  • Singha TK (2012) Microbial extracellular polymeric substances: production, isolation and applications. IOSR J Pharm 2(2):271–281

    Google Scholar 

  • Sompong U, Anuntalabhochai S, Cutler RW, Castenholz RW, Peerapornpisal Y (2008) Morphological and phylogenetic diversity of cyanobacterial populations in six hot springs of Thailand. Science Asia 34:153–162

    Article  CAS  Google Scholar 

  • Song Z, Jiang H, Zhi X, Zhang C, Dong H, Li W (2009) Actinobacterial diversity in hot springs in Tengchong (China), Kamchatka (Russia), and Nevada (USA). Geomicrobiol J 26:256–263

    Article  CAS  Google Scholar 

  • Stolyar S, He Q, Joachimiak MP, He Z, Yang ZK, Borglin SE, Joyner DC, Huang K, Alm E, Hazen TC, Zhou J, Wall JD, Arkin AP, Stahl DA (2007) Response of Desulfovibrio vulgaris to alkaline stres. J Bacteriol 189(24):8944–8952

    Article  PubMed  CAS  Google Scholar 

  • Tamulonis C, Postma M, Kaandorp J (2011) Modeling filamentous cyanobacteria reveals the advantages of long and fast trichomes for optimizing light exposure. PLoS ONE 6(7):e22084

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony. Methods Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Tobler DJ, Benning LG (2011) Bacterial diversity in five Icelandic geothermal waters: temperature and sinter growth rate effects. Extremophiles 15:473–485

    Article  PubMed  Google Scholar 

  • Wagner C, Mau M, Schlomann M, Heinicke J, Koch U (2007) Characterization of the bacterial flora in mineral waters in upstreaming fluids of deep igneous rock aquifers. J Geophys Res 112:G01003

    Article  Google Scholar 

  • Yang GQ, Zhang J, Kwon SW, Zhou SG, Han LC, Chen M, Ma C, Zhuang L (2012) Thauera humireducens sp. nov., a humus-reducing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 63(3):873–878

    Google Scholar 

  • Zhang LH, Hedlund BP, Meng J (2011) Diversity of Archaea in terrestrial hot springs and role of ammonia oxidation. In: De Brujin FJ (ed) Handbook of molecular microbial ecology II: metagenomics in different habitats. Wiley, Canada, pp 381–402

    Chapter  Google Scholar 

  • Ziegler S, Waidner B, Itoh T, Schumann P, Spring S, Gescher J (2012) Metallibacterium scheffleri gen. nov., sp. nov., an alkalinizing gammaproteobacterium isolated from an acidic biofilm. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.042986-0

Download references

Acknowledgments

This work was partially supported by a Grant funded by the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-RU-PD-2011-3-0215 and partially by the POSCCE programme, project number 236/16.08.2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Coman.

Additional information

Communicated by A. Oren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Maximum-likelihood tree (MEGA 5) showing the phylogenetic relationships of Ady Endre (AE1a - circle symbol) and Roşiori (R1a - square symbol) archaeal 16S rRNA gene sequences to closely related sequences from the GenBank database

Supplementary material 1 (JPEG 473 kb)

Maximum-likelihood tree (MEGA 5) showing the phylogenetic relationships of Ady Endre (AE1b - circle symbol) and Roşiori (R1b - square symbol) bacterial 16S rRNA gene sequences to closely related sequences from the GenBank database. Bootstrap values <50% are not shown

Supplementary material 2 (JPEG 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coman, C., Drugă, B., Hegedus, A. et al. Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in Romania. Extremophiles 17, 523–534 (2013). https://doi.org/10.1007/s00792-013-0537-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-013-0537-5

Keywords

Navigation