Skip to main content
Log in

Oil-bioremediation potential of two hydrocarbonoclastic, diazotrophic Marinobacter strains from hypersaline areas along the Arabian Gulf coasts

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Two halophilic, hydrocarbonoclastics bacteria, Marinobacter sedimentarum and M. flavimaris, with diazotrophic potential occured in hypersaline waters and soils in southern and northern coasts of Kuwait. Their numbers were in the magnitude of 103 colony forming units g−1. The ambient salinity in the hypersaline environments was between 3.2 and 3.5 M NaCl. The partial 16S rRNA gene sequences of the two strains showed, respectively, 99 and 100 % similarities to the sequences in the GenBank. The two strains failed to grow in the absence of NaCl, exhibited best growth and hydrocarbon biodegradation in the presence of 1 to 1.5 M NaCl, and still grew and maintained their hydrocarbonoclastic activity at salinities up to 5 M NaCl. Both species utilized Tween 80, a wide range of individual aliphatic hydrocarbons (C9–C40) and the aromatics benzene, biphenyl, phenanthrene, anthracene and naphthalene as sole sources of carbon and energy. Experimental evidence was provided for their nitrogen-fixation potential. The two halophilic Marinobacter strains successfully mineralized crude oil in nutrient media as well as in hypersaline soil and water microcosms without the use of any nitrogen fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Awadhi H, Al-Mailem D, Dashti N, Khanafer M, Radwan SS (2012) Indigenous hydrocarbon-utilizing bacterioflora in oil-polluted habitats in Kuwait, two decades after the greatest man-made oil spill. Arch Microbiol 194:689–705

    Article  PubMed  CAS  Google Scholar 

  • Al-Mailem DM, Sorkhoh NA, Al-Awadhi H, Eliyas M, Radwan SS (2010) Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles 14:321–328

    Article  PubMed  CAS  Google Scholar 

  • Al-Mailem DM, Eliyas M, Radwan SS (2012) Enhanced haloarcaheal oil removal in hypersaline environments via organic nitrogen fertilization and illumination. Extremophiles 16:751–758

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Bogan BW, Sullivan WR, Kayser KJ, Derr KD, Aldrich HC, Paterek JR (2003) Alkanindiges illinoisensis gen. nov., sp. nov., an obligately hydrocarbonoclastic, aerobic squalane-degrading bacterium isolated from oilfield soils. Int J Syst Evol Micobiol 53:1389–1395

    Article  CAS  Google Scholar 

  • Bonfá MR, Grossman MJ, Mellado E, Durrant LR (2011) Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water. Chemosphere 84:1671–1676

    Article  PubMed  Google Scholar 

  • Cuadros-Orellana S, Pohlschro M, Durrant LR (2006) Isolation and characterization of halophilic archaea able to grow in aromatic compounds. Int Biodeterior Biodegr 57:151–154

    Article  CAS  Google Scholar 

  • Dastgheib SM, Amoozegar MA, Khajeh K, Shavandi M, Ventosa A (2012) Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol 95:789–798

    Article  PubMed  CAS  Google Scholar 

  • Emerson D, Chauhan S, Oriel P, Breznak JA (1994) Haloferax sp. D1227, a halophilic Archaeon capable of growth on aromatic compounds. Arch Microbiol 161:445–452

    Article  CAS  Google Scholar 

  • Fairley DJ, Boyd DR, Sharma ND, Allen CCR, Morgan P, Larkin MJ (2002) Aerobic metabolism of 4-hydroxybenzoic acid in Archaea via an unusual pathway involving an intramolecular migration shift (NIH shift). Appl Environ Microbiol 68:6246–6255

    Article  PubMed  CAS  Google Scholar 

  • Gao W, Cui Z, Li Q, Xu G, Jia X, Zheng L (2012) Marinobacter nanhaiticus sp. nov., polycyclic aromatic hydrocarbon-degrading bacterium isolated from sediment of the South China Sea. Anton Van Leeuwen. doi:10.1007/s10482-012-9830-z

  • Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576

    Article  PubMed  CAS  Google Scholar 

  • Green DH, Bowman JP, Smith EA, Gutierrez T, Bolch CJS (2006) Marinobacter algicola sp. nov., isolated from laboratory cultures of paralytic shellfish toxin-producing dinoflagellates. Int J Syst Evol Microbiol 56:523–527

    Article  PubMed  CAS  Google Scholar 

  • Gu J, Cai H, Yu SL, Qu R, Yin B, Guo YF, Zhao JY, Wu XL (2007) Marinobacter gudaonensis sp. nov., isolated from oil-polluted saline soil in a Chinese oilfield. Int J Syst Evol Microbiol 57:250–254

    Article  PubMed  CAS  Google Scholar 

  • Hassanshahian M, Emtiazi G, Cappello S (2012) Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and Caspian Sea. Mar Pollut Bullet 64:7–12

    Article  CAS  Google Scholar 

  • Hunter JR (1982) The physical oceanography of the Arabian Gulf. A review and theoretical interpretation of previous observations. In: Halwagy R, Clayton D, Behbehani M (eds) The first Arabian Gulf conference on environment and pollution. Kuwait University, Faculty of Science, Kuwait, pp. 1–23

  • Huu NB, Denner EBM, Ha DTC, Wanner G, Stan-Lotter H (1999) Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49:367–375

    Article  PubMed  CAS  Google Scholar 

  • Jimenez N, Vinas M, Guiu-Aragones C, Bayona JM, Albaiges J, Solanas AM (2011) Polyphasic approach for assessing changes in an autochthonous marine bacterial community in the presence of prestige fuel oil and its biodegradation potential. Appl Microbiol Biotechnol 91:823–834

    Article  PubMed  CAS  Google Scholar 

  • Kerr RP, Capone DG (1988) The effect of salinity on the microbial mineralization of two polycyclic aromatic hydrocarbons in estuarine sediments. Mar Environ Res 26:181–198

    Article  CAS  Google Scholar 

  • Kleinsteuber S, Riis V, Fetzer I, Harms H, Müller S (2006) Population dynamics within a microbial consortium during growth on diesel fuel in saline environments. Appl Environ Microbiol 72:3531–3542

    Article  PubMed  CAS  Google Scholar 

  • Klug MJ, Markovetz AJ (1971) Utilization of aliphatic hydrocarbons by microorganisms. Adv Microb Physiol 5:1–43

    Article  PubMed  CAS  Google Scholar 

  • Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and bacterial community response in Gulf of Mexico beach sands impacted by the deepwater Horizon oil spill. Appl Environ Microbiol 77:7962–7974

    Article  PubMed  CAS  Google Scholar 

  • Kulichevskaya IS, Milekhina EI, Borzenkov IA, Zvyagintseva IS, Belyaev SS (1992) Oxidation of petroleum hydrocarbons by extremely halophilic archaebacteria. Microbiology 60:596–601

    Google Scholar 

  • Lattuati A, Metzger P, Acquaviva M, Bertrand JC, Largeau C (2002) n-Alkane degradation by Marinobacter hydrocarbonoclasticus strain SP 17: long chain B-hydroxy acids as indicators of bacterial activity. Organic Geochem 33:37–45

    Article  CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbiological degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    PubMed  CAS  Google Scholar 

  • Mahmoud HM, Al-Hasan RH, Sorkhoh NA, Eliyas M, Radwan SS (2009) Attenuation of oil pollutants in the Arabian Gulf water by bacteria naturally associated with live fish. Int Biodeter Biodeg 63:615–620

    Article  CAS  Google Scholar 

  • Márquez MC, Ventosa A (2005) Marinobacter hydrocarbonoclasticus Gauthier et al. 1992 and Marinobacter aquaeolei Nguyen et al. 1999 are heterotypic synonyms. Int J Syst Evol Microbiol 55:1349–1351

    Article  PubMed  Google Scholar 

  • Muyzer G, de waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain. Reaction-amplified genes encoding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Oren A, Gurevich P, Azachi M, Hents Y (1992) Microbial degradation of pollutants at high salt concentrations. Biodegradation 3:387–398

    Article  CAS  Google Scholar 

  • Riis V, Kleinsteuber S, Babel W (2003) Influence of high salinities on the degradation of diesel fuel by bacteria consortia. Can J Microbiol 49:713–721

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Shivaji S, Gupta P, Chaturvedi P, Suresh K, Delille D (2005) Marinobacter maritimus sp. nov., a psychrotolerant strain isolated from sea water off the subantarctic Kerguelen islands. Int J Syst Evol Microbiol 55:1453–1456

    Article  PubMed  CAS  Google Scholar 

  • Sorkhoh NA, Ghannoum MA, Ibrahim AS, Stretton RJ, Radwan SS (1990) Crude oil and hydrocarbon degrading strains of Rhodococcus rhodochrous isolated from soil and marine environments in Kuwait. Environ Pollut 65:1–17

    Article  PubMed  CAS  Google Scholar 

  • Tapilatu YH, Grossi V, Acquaviva M, Militon C, Bertrand JC, Cuny P (2010) Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles 14:225–231

    Article  PubMed  CAS  Google Scholar 

  • Teske A, Wawer C, Muyzer G, Ramsing NB (1996) Distribution of sulfate-reducing bacteria in a stratified Fjord (Maiager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR amplified ribosomal DNA fragments. Appl Environ Microbiol 62:1405–1415

    PubMed  CAS  Google Scholar 

  • Yakimov MM, Lunsdorf H, Golyshin PN (2003) Thermoleophilum album and Thermoleophilum are culturable representatives of group 2 of the Rubrobacteridae (Actinobacteria). Int J Syst Evol Microbiol 53:377–380

    Article  PubMed  Google Scholar 

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the University of Kuwait, Research Grant RS 01/12. Thanks are due to the SAF unit and GRF, Kuwait University for providing GLC (GS 02/01) and Genetic analyzer (GS 01/02) facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Radwan.

Additional information

Communicated by L. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Mailem, D.M., Eliyas, M. & Radwan, S.S. Oil-bioremediation potential of two hydrocarbonoclastic, diazotrophic Marinobacter strains from hypersaline areas along the Arabian Gulf coasts. Extremophiles 17, 463–470 (2013). https://doi.org/10.1007/s00792-013-0530-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-013-0530-z

Keywords

Navigation