Skip to main content
Log in

Multifunctional enzymes in archaea: promiscuity and moonlight

  • Review
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Enzymes from many archaea colonizing extreme environments are of great interest because of their potential for various biotechnological processes and scientific value of evolution. Many enzymes from archaea have been reported to catalyze promiscuous reactions or moonlight in different functions. Here, we summarize known archaeal enzymes of both groups that include different kinds of proteins. Knowledge of their biochemical properties and three-dimensional structures has proved invaluable in understanding mechanism, application, and evolutionary implications of this manifestation. In addition, the review also summarizes the methods to unravel the extra function which almost was discovered serendipitously. The study of these amazing enzymes will provide clues to optimize protein engineering applications and how enzymes might have evolved on Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed H, Ettema TJG, Tjaden B, Geerling ACM, van der Oost J, Siebers B (2005) The semi-phosphorylative Entner–Doudoroff pathway in hyperthermophilic archaea: a re-evaluation. Biochem J 390:529–540

    Article  PubMed  CAS  Google Scholar 

  • Angelov A, Fütterer O, Valerius O, Braus GH, Liebl W (2005) Properties of the recombinant glucose/galactose dehydrogenase from the extreme thermoacidophile, Picrophilus torridus. FEBS J 272:1054–1062

    Article  PubMed  CAS  Google Scholar 

  • Atomi H, Sato T, Kanai T (2011) Application of hyperthermophiles and their enzymes. Curr Opin Biotechnol 22:618–626

    Article  PubMed  CAS  Google Scholar 

  • Bocquier AA, Liu L, Cann IKO, Komori K, Kohda D, Ishino Y (2001) Archaeal primase: bridging the gap between RNA and DNA polymerases. Curr Biol 11:452–456

    Article  PubMed  CAS  Google Scholar 

  • Brown JR (2003) Ancient horizontal gene transfer. Nat Rev Genet 4:121–132

    Article  PubMed  CAS  Google Scholar 

  • Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb J-F, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NSM, Weidman JF, Fuhrmann JL, Nguyen D, Utterback TR, Kelley JM, Peterson JD, Sadow PW, Hanna MC, Cotton MD, Roberts KM, Hurst MA, Kaine BP, Borodovsky M, Klenk H-P, Fraser CM, Smith HO, Woese CR, Venter JC (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073

    Article  PubMed  CAS  Google Scholar 

  • Campbell RM, Scanes CG (1995) Endocrine peptides ‘moonlighting’ as immune modulators: roles for somatostatin and GH-releasing factor. J Endocrinol 147:383–396

    Article  PubMed  CAS  Google Scholar 

  • Carbonell P, Faulon J-L (2010) Molecular signatures-based prediction of enzyme promiscuity. Bioinformatics 26:2012–2019

    Article  PubMed  CAS  Google Scholar 

  • Cheng X-Y, Huang W-J, Hu S-C, Zhang H-L, Wang H, Zhang J-X, Lin H-H, Chen Y-Z, Zou Q, Ji Z-L (2012) A global characterization and identification of multifunctional enzymes. PLoS ONE 7:e38979

    Article  PubMed  CAS  Google Scholar 

  • Copley SD (2003) Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr Opin Chem Biol 7:265–272

    Article  PubMed  CAS  Google Scholar 

  • Danson MJ, Hough DW (2005) Promiscuity in the archaea. The enzymology of metabolic pathways. Biochemist 27:17–21

    CAS  Google Scholar 

  • Du J, Say RF, Lu W, Fuchs G, Einsle O (2011) Active-site remodelling in the bifunctional fructose-1,6-bisphosphate aldolase/phosphatase. Nature 478:534–537

    Article  PubMed  CAS  Google Scholar 

  • Durbecq V, Legrain C, Roovers M, Piérard A, Glansdorff N (1997) The carbamate kinase-like carbamoyl phosphate synthetase of the hyperthermophilic archaeon Pyrococcus furiosus, a missing link in the evolution of carbamoyl phosphate biosynthesis. Proc Natl Acad Sci USA 94:12803–12808

    Article  PubMed  CAS  Google Scholar 

  • Elshafei AM, Abdel-Fatah OM (2001) Evidence for a non-phosphorylated route of galactose breakdown in cell-free extracts of Aspergillus niger. Enzyme Microb Technol 29:76–83

    Article  PubMed  CAS  Google Scholar 

  • Faik P, Walker JIH, Redmill AAM, Morgan MJ (1988) Mouse glucose-6-phosphate isomerase and neuroleukin have identical 3′ sequences. Nature 332:455–456

    Article  PubMed  Google Scholar 

  • Fairbank M, St-Pierre P, Nabi IR (2009) The complex biology of autocrine motility factor/phosphoglucose isomerase (AMF/PGI) and its receptor, the gp78/AMFR E3 ubiquitin ligase. Mol BioSyst 5:793–801

    Article  PubMed  CAS  Google Scholar 

  • Fan L, Arvai AS, Cooper PK, Iwai S, Hanaoka F, Tainer JA (2006) Conserved XPB core structure and motifs for DNA unwinding: implications for pathway selection of transcription or excision repair. Mol Cell 22:27–37

    Article  PubMed  CAS  Google Scholar 

  • Fukuda C, Kawai S, Murata K (2007) NADP(H) phosphatase activities of archaeal inositol monophosphatase and eubacterial 3′-phosphoadenosine 5′-phosphate phosphatase. Appl Environment Microbiol 73:5447–5452

    Article  CAS  Google Scholar 

  • Fushinobu S, Nishimasu H, Hattori D, Song H-J, Wakagi T (2011) Structural basis for the bifunctionality of fructose-1,6-bisphosphate aldolase/phosphatase. Nature 478:538–541

    Article  PubMed  CAS  Google Scholar 

  • Gancedo C, Flores C-L (2008) Moonlighting proteins in yeasts. Microbiol Mol Biol Rev 72:197–210

    Article  PubMed  CAS  Google Scholar 

  • Gerlt JA, Babbitt PC (2009) Enzyme (re)design: lessons from natural evolution and computation. Curr Opin Chem Biol 13:10–18

    Article  PubMed  CAS  Google Scholar 

  • Giulio MD (2003) The universal ancestor was a thermophile or a hyperthermophile: tests and further evidence. J Theor Biol 221:425–436

    Article  PubMed  Google Scholar 

  • Gomez A, Hernandez S, Amela I, Pinol J, Cedano J, Querol E (2011) Do protein–protein interaction databases identify moonlighting proteins? Mol BioSyst 7:2379–2382

    Article  PubMed  CAS  Google Scholar 

  • Gómez A, Domedel N, Cedano J, Piñol J, Querol E (2003) Do current sequence analysis algorithms disclose multifunctional (moonlighting) proteins? Bioinformatics 19:895–896

    Article  PubMed  CAS  Google Scholar 

  • Hansen T, Urbanke C, Schönheit P (2004a) Bifunctional phosphoglucose/phosphomannose isomerase from the hyperthermophilic archaeon Pyrobaculum aerophilum. Extremophiles 8:507–512

    Article  PubMed  CAS  Google Scholar 

  • Hansen T, Wendorff D, Schönheit P (2004b) Bifunctional phosphoglucose/phosphomannose isomerases from the archaea Aeropyrum pernix and Thermoplasma acidophilum constitute a novel enzyme family within the phosphoglucose isomerase superfamily. J Biol Chem 279:2262–2272

    Article  PubMed  CAS  Google Scholar 

  • Harrison PM, Kumar A, Lang N, Snyder M, Gerstein M (2002) A question of size: the eukaryotic proteome and the problems in defining it. Nucleic Acids Res 30:1083–1090

    Article  PubMed  CAS  Google Scholar 

  • Henderson B, Martin A (2011) Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun 79:3476–3491

    Article  PubMed  CAS  Google Scholar 

  • Hendriks W, Mulders JW, Bibby MA, Slingsby C, Bloemendal H, de Jong WW (1988) Duck lens epsilon-crystallin and lactate dehydrogenase B4 are identical: a single-copy gene product with two distinct functions. Proc Natl Acad Sci USA 85:7114–7118

    Article  PubMed  CAS  Google Scholar 

  • Huberts DHEW, van der Klei IJ (2010) Moonlighting proteins: an intriguing mode of multitasking. BBA Mol Cell Res 1803:520–525

    CAS  Google Scholar 

  • Hult K, Berglund P (2007) Enzyme promiscuity: mechanism and applications. Trends Biotechnol 25:231–238

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa K, Ishida H, Matsui I, Kawarabayasi Y, Kikuchi H (2001) Novel bifunctional hyperthermostable carboxypeptidase/aminoacylase from Pyrococcus horikoshii OT3. Appl Environ Microbiol 67:673–677

    Article  PubMed  CAS  Google Scholar 

  • Jeanguenin L, Lara-Núñez A, Pribat A, Mageroy MH, Gregory JF, Rice KC, de Crécy-Lagard V, Hanson AD (2010) Moonlighting glutamate formiminotransferases can functionally replace 5-formyltetrahydrofolate cycloligase. J Biol Chem 285:41557–41566

    Article  PubMed  CAS  Google Scholar 

  • Jeffery CJ (1999) Moonlighting proteins. Trends Biochem Sci 24:8–11

    Article  PubMed  CAS  Google Scholar 

  • Jeffery CJ (2003) Multifunctional proteins: examples of gene sharing. Ann Med 35:28–35

    Article  PubMed  CAS  Google Scholar 

  • Jeffery CJ (2004) Moonlighting proteins: complications and implications for proteomics research. Drug Discov Today 3:71–78

    Article  CAS  Google Scholar 

  • Jeffery CJ (2009) Moonlighting proteins—an update. Mol BioSyst 5:345–350

    Article  PubMed  CAS  Google Scholar 

  • Jeffery CJ, Bahnson BJ, Chien W, Ringe D, Petsko GA (2000) Crystal structure of rabbit phosphoglucose isomerase, a glycolytic enzyme that moonlights as neuroleukin, autocrine motility factor, and differentiation mediator. Biochemistry 39:955–964

    Article  PubMed  CAS  Google Scholar 

  • Jeyakanthan J, Drevland RM, Gayathri DR, Velmurugan D, Shinkai A, Kuramitsu S, Yokoyama S, Graham DE (2010) Substrate specificity determinants of the methanogen homoaconitase enzyme: structure and function of the small subunit. Biochemistry 49:2687–2696

    Article  PubMed  CAS  Google Scholar 

  • Jia B, Park S-C, Lee S, Pham BP, Yu R, Le TL, Han SW, Yang J-K, Choi M-S, Baumeister W, Cheong G-W (2008) Hexameric ring structure of a thermophilic archaeon NADH oxidase that produces predominantly H2O. FEBS J 275:5355–5366

    Article  PubMed  CAS  Google Scholar 

  • Jia B, Lee S, Pham B, Cho Y, Yang J-K, Byeon H-S, Kim J, Cheong G-W (2010a) An archaeal NADH oxidase causes damage to both proteins and nucleic acids under oxidative stress. Mol Cells 29:363–371

    Article  PubMed  CAS  Google Scholar 

  • Jia B, Lee S, Pham B, Liu J, Pan H, Zhang S, Cheong G-W (2010b) Oxidized NADH oxidase inhibits activity of an ATP/NAD kinase from a thermophilic archaeon. Protein J 29:609–616

    Article  PubMed  CAS  Google Scholar 

  • Jia B, Linh L, Lee S, Pham B, Liu J, Pan H, Zhang S, Cheong G-W (2011) Biochemical characterization of glyceraldehyde-3-phosphate dehydrogenase from Thermococcus kodakarensis KOD1. Extremophiles 15:337–346

    Article  PubMed  CAS  Google Scholar 

  • Johnson KA, Chen L, Yang H, Roberts MF, Stec B (2001) Crystal structure and catalytic mechanism of the MJ0109 gene product: a bifunctional enzyme with inositol monophosphatase and fructose 1,6-bisphosphatase activities. Biochemistry 40:618–630

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki S, Ishikura J, Chiba D, Nishino T, Niimura Y (2004) Purification and characterization of an H2O-forming NADH oxidase from Clostridium aminovalericum existence of an oxygen-detoxifying enzyme in an obligate anaerobic bacteria. Arch Microbiol 181:324–330

    Article  PubMed  CAS  Google Scholar 

  • Khersonsky O, Roodveldt C, Tawfik DS (2006) Enzyme promiscuity: evolutionary and mechanistic aspects. Curr Opin Chem Biol 10:498–508

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Lee SB (2006) Catalytic promiscuity in dihydroxy-acid dehydratase from the thermoacidophilic archaeon Sulfolobus solfataricus. J Biol Chem 139:591–596

    CAS  Google Scholar 

  • Koonin EV, Wolf YI (2008) Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 36:6688–6719

    Article  PubMed  CAS  Google Scholar 

  • Lamble HJ, Heyer NI, Bull SD, Hough DW, Danson MJ (2003) Metabolic pathway promiscuity in the archaeon Sulfolobus solfataricus revealed by studies on glucose dehydrogenase and 2-keto-3-deoxygluconate aldolase. J Biol Chem 278:34066–34072

    Article  PubMed  CAS  Google Scholar 

  • Lamble HJ, Milburn CC, Taylor GL, Hough DW, Danson MJ (2004) Gluconate dehydratase from the promiscuous Entner–Doudoroff pathway in Sulfolobus solfataricus. FEBS Lett 576:133–136

    Article  PubMed  CAS  Google Scholar 

  • Lamble HJ, Theodossis A, Milburn CC, Taylor GL, Bull SD, Hough DW, Danson MJ (2005) Promiscuity in the part-phosphorylative Entner–Doudoroff pathway of the archaeon Sulfolobus solfataricus. FEBS Lett 579:6865–6869

    Article  PubMed  CAS  Google Scholar 

  • Le Breton M, Henneke G, Norais C, Flament D, Myllykallio H, Querellou J, Raffin J-P (2007) The heterodimeric primase from the euryarchaeon Pyrococcus abyssi: a multifunctional enzyme for initiation and repair? J Mol Biol 374:1172–1185

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Jia B, Pham B, Shao Y, Kwak J, Cheong G-W (2012) Architecture and characterization of sarcosine oxidase from Thermococcus kodakarensis KOD1. Extremophiles 16:87–93

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Komori K, Ishino S, Bocquier AA, Cann IKO, Kohda D, Ishino Y (2001) The archaeal DNA primase. J Biol Chem 276:45484–45490

    Article  PubMed  CAS  Google Scholar 

  • Maeder DL, Anderson I, Brettin TS, Bruce DC, Gilna P, Han CS, Lapidus A, Metcalf WW, Saunders E, Tapia R, Sowers KR (2006) The Methanosarcina barkeri genome: comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. J Bacteriol 188:7922–7931

    Article  PubMed  CAS  Google Scholar 

  • Martin DD, Ciulla RA, Roberts MF (1999) Osmoadaptation in archaea. Appl Environ Microbiol 65:1815–1825

    PubMed  CAS  Google Scholar 

  • Matsui E, Nishio M, Yokoyama H, Harata K, Darnis S, Matsui I (2003) Distinct domain functions regulating de novo DNA synthesis of thermostable DNA primase from hyperthermophile Pyrococcus horikoshii. Biochemistry 42:14968–14976

    Article  PubMed  CAS  Google Scholar 

  • Maurelli L, Giovane A, Esposito A, Moracci M, Fiume I, Rossi M, Morana A (2008) Evidence that the xylanase activity from Sulfolobus solfataricus Oalpha is encoded by the endoglucanase precursor gene (sso1354) and characterization of the associated cellulase activity. Extremophiles 12:689–700

    Article  PubMed  CAS  Google Scholar 

  • McCutcheon JP, Moran NA (2012) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26

    CAS  Google Scholar 

  • Milburn CC, Lamble HJ, Theodossis A, Bull SD, Hough DW, Danson MJ, Taylor GL (2006) The structural basis of substrate promiscuity in glucose dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus. J Biol Chem 281:14796–14804

    Article  PubMed  CAS  Google Scholar 

  • Miller BG, Raines RT (2004) Identifying latent enzyme activities: substrate ambiguity within modern bacterial sugar kinases. Biochemistry 43:6387–6392

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki K (2005) Bifunctional isocitrate-homoisocitrate dehydrogenase: a missing link in the evolution of β-decarboxylating dehydrogenase. Biochem Biophys Res Commun 331:341–346

    Article  PubMed  CAS  Google Scholar 

  • Modjtahedi N, Giordanetto F, Madeo F, Kroemer G (2006) Apoptosis-inducing factor: vital and lethal. Trends Cell Biol 16:264–272

    Article  PubMed  CAS  Google Scholar 

  • Moore Bd (2004) Bifunctional and moonlighting enzymes: lighting the way to regulatory control. Trends Plant Sci 9:221–228

    Article  PubMed  CAS  Google Scholar 

  • Nam H, Lewis NE, Lerman JA, Lee D-H, Chang RL, Kim D, Palsson BO (2012) Network context and selection in the evolution to enzyme specificity. Science 337:1101–1104

    Article  PubMed  CAS  Google Scholar 

  • Nobeli I, Favia AD, Thornton JM (2009) Protein promiscuity and its implications for biotechnology. Nat Biotechnol 27:157–167

    Article  PubMed  CAS  Google Scholar 

  • Ramadan K, Shevelev I, Hubscher U (2004) The DNA-polymerase-X family: controllers of DNA quality? Nat Rev Mol Cell Biol 5:1038–1043

    Article  PubMed  CAS  Google Scholar 

  • Ramsay B, Wiedenheft B, Allen M, Gauss GH, Martin Lawrence C, Young M, Douglas T (2006) Dps-like protein from the hyperthermophilic archaeon Pyrococcus furiosus. J Inorg Biochem 100:1061–1068

    Article  PubMed  CAS  Google Scholar 

  • Raychaudhuri S, Dey S, Bhattacharyya NP, Mukhopadhyay D (2009) The role of intrinsically unstructured proteins in neurodegenerative diseases. PLoS ONE 4:e5566

    Article  PubMed  CAS  Google Scholar 

  • Reher M, Fuhrer T, Bott M, Schönheit P (2010) The nonphosphorylative Entner–Doudoroff Pathway in the thermoacidophilic euryarchaeon Picrophilus torridus involves a novel 2-keto-3-deoxygluconate-specific aldolase. J Bacteriol 192:964–974

    Article  PubMed  CAS  Google Scholar 

  • Ronimus R, Morgan H (2001) The biochemical properties and phylogenies of phosphofructokinases from extremophiles. Extremophiles 5:357–373

    Article  PubMed  CAS  Google Scholar 

  • Ronimus R, Morgan H (2003) Distribution and phylogenies of enzymes of the Embden–Meyerhof–Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism. Archaea 1:199–221

    Article  PubMed  CAS  Google Scholar 

  • Rose IA, O’Connell EL, Schray KJ (1973) Mannose 6-phosphate: anomeric form used by phosphomannose isomerase and its l-epimerization by phosphoglucose isomerase. J Biol Chem 248:2232–2234

    PubMed  CAS  Google Scholar 

  • Royer SF, Haslett L, Crennell SJ, Hough DW, Danson MJ, Bull SD (2010) Structurally informed site-directed mutagenesis of a stereochemically promiscuous aldolase to afford stereochemically complementary biocatalysts. J Am Chem Soc 132:11753–11758

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Atomi H (2011) Novel metabolic pathways in archaea. Curr Opin Microbiol 14:307–314

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Imanaka H, Rashid N, Fukui T, Atomi H, Imanaka T (2004) Genetic evidence identifying the true gluconeogenic fructose-1,6-bisphosphatase in Thermococcus kodakarensis and other hyperthermophiles. J Bacteriol 186:5799–5807

    Article  PubMed  CAS  Google Scholar 

  • Say RF, Fuchs G (2010) Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme. Nature 464:1077–1081

    Article  PubMed  CAS  Google Scholar 

  • Schiraldi C, Giuliano M, De Rosa M (2002) Perspectives on biotechnological applications of archaea. Archaea 1:75–86

    Article  PubMed  CAS  Google Scholar 

  • Schulz LC, Bahr JM (2003) Glucose-6-phosphate isomerase is necessary for embryo implantation in the domestic ferret. Proc Natl Acad Sci USA 100:8561–8566

    Article  PubMed  CAS  Google Scholar 

  • Seeholzer SH (1993) Phosphoglucose isomerase: a ketol isomerase with aldol C2-epimerase activity. Proc Natl Acad Sci USA 90:1237–1241

    Article  PubMed  CAS  Google Scholar 

  • Siebers B, Schönheit P (2005) Unusual pathways and enzymes of central carbohydrate metabolism in archaea. Curr Opin Microbiol 8:695–705

    Article  PubMed  CAS  Google Scholar 

  • Sriram G, Martinez JA, McCabe ERB, Liao JC, Dipple KM (2005) Single-gene disorders: what role could moonlighting enzymes play? Am J Hum Genet 76:911–924

    Article  PubMed  CAS  Google Scholar 

  • Stathopoulos C, Li T, Longman R, Vothknecht UC, Becker HD, Ibba M, Söll D (2000) One polypeptide with two aminoacyl-tRNA synthetase activities. Science 287:479–482

    Article  PubMed  CAS  Google Scholar 

  • Stec B, Yang H, Johnson KA, Chen L, Roberts MF (2000) MJ0109 is an enzyme that is both an inositol monophosphatase and the ‘missing’ archaeal fructose-1,6-bisphosphatase. Nat Struct Mol Biol 7:1046–1050

    Article  CAS  Google Scholar 

  • Stieglitz KA, Johnson KA, Yang H, Roberts MF, Seaton BA, Head JF, Stec B (2002) Crystal structure of a dual activity IMPase/FBPase (AF2372) from Archaeoglobus fulgidus. J Biol Chem 277:22863–22874

    Article  PubMed  CAS  Google Scholar 

  • Swan MK, Hansen T, Schönheit P, Davies C (2004) Structural basis for phosphomannose isomerase activity in phosphoglucose isomerase from Pyrobaculum aerophilum: a subtle difference between distantly related enzymes. Biochemistry 43:14088–14095

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Fukui T, Imanaka T (2001) Different cleavage specificities of the dual catalytic domains in chitinase from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1. J Biol Chem 276:35629–35635

    Article  PubMed  CAS  Google Scholar 

  • Theodossis A, Walden H, Westwick EJ, Connaris H, Lamble HJ, Hough DW, Danson MJ, Taylor GL (2004) The structural basis for substrate promiscuity in 2-keto-3-deoxygluconate aldolase from the Entner–Doudoroff pathway in Sulfolobus solfataricus. J Biol Chem 279:43886–43892

    Article  PubMed  CAS  Google Scholar 

  • Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533

    Article  PubMed  CAS  Google Scholar 

  • Tompa P, Fuxreiter M (2008) Fuzzy complexes: polymorphism and structural disorder in protein–protein interactions. Trends Biochem Sci 33:2–8

    Article  PubMed  CAS  Google Scholar 

  • Vahsen N, Cande C, Dupaigne P, Giordanetto F, Kroemer RT, Herker E, Scholz S, Modjtahedi N, Madeo F, Le Cam E, Kroemer G (2005) Physical interaction of apoptosis-inducing factor with DNA and RNA. Oncogene 25:1763–1774

    Article  CAS  Google Scholar 

  • Verhees CH, Akerboom J, Schiltz E, de Vos WM, van der Oost J (2002) Molecular and biochemical characterization of a distinct type of fructose-1,6-bisphosphatase from Pyrococcus furiosus. J Bacteriol 184:3401–3405

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Takehana K, Date M, Shinozaki T, Raz A (1996) Tumor cell autocrine motility factor is the neuroleukin/phosphohexose isomerase polypeptide. Cancer Res 56:2960–2963

    PubMed  CAS  Google Scholar 

  • Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton GG, Simon M, Söll D, Stetter KO, Short JM, Noordewier M (2003) The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci 100:12984–12988

    Article  PubMed  CAS  Google Scholar 

  • Wojtas MN, Mogni M, Millet O, Bell SD, Abrescia NGA (2012) Structural and functional analyses of the interaction of archaeal RNA polymerase with DNA. Nucleic Acids Res 40(19):9941–9952

    Article  PubMed  CAS  Google Scholar 

  • Wolterink-van Loo S, van Eerde A, Siemerink MAJ, Akerboom J, Dijkstra BW, van der Oost J (2007) Biochemical and structural exploration of the catalytic capacity of Sulfolobus KDG aldolases. Biochem J 403:421–430

    Article  PubMed  CAS  Google Scholar 

  • Woo E-J, Lee S, Cha H, Park J-T, Yoon S-M, Song H-N, Park K-H (2008) Structural insight into the bifunctional mechanism of the glycogen-debranching enzyme TreX from the archaeon Sulfolobus solfataricus. J Biol Chem 283:28641–28648

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Seiter K, Feldman E, Ahmed T, Chiao J (1996) The differentiation and maturation mediator for human myeloid leukemia cells shares homology with neuroleukin or phosphoglucose isomerase. Blood 87:4502–4506

    PubMed  CAS  Google Scholar 

  • Xue B, Williams RW, Oldfield CJ, Dunker AK, Uversky VN (2010) Archaic chaos: intrinsically disordered proteins in archaea. BMC Syst Biol 4(Suppl 1):1–21

    Article  CAS  Google Scholar 

  • Yamada Y, Fujiwara T, Sato T, Igarashi N, Tanaka N (2002) The 2.0 Å crystal structure of catalase-peroxidase from Haloarcula marismortui. Nat Struct Mol Biol 9:691–695

    Article  CAS  Google Scholar 

  • Yasutake Y, Yao M, Sakai N, Kirita T, Tanaka I (2004) Crystal structure of the Pyrococcus horikoshii isopropylmalate isomerase small subunit provides insight into the dual substrate specificity of the enzyme. J Mol Biol 344:325–333

    Article  PubMed  CAS  Google Scholar 

  • York JD, Ponder JW, Majerus PW (1995) Definition of a metal-dependent/Li(+)-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure. Proc Natl Acad Sci USA 92:5149–5153

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Akutsu J, Kawarabayasi Y (2010) Identification of novel acetyltransferase activity on the thermostable protein ST0452 from Sulfolobus tokodaii strain 7. J Bacteriol 192:3287–3293

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for research on moonlighting proteins and other projects has supported by the National Natural Science Foundation of China (31171794, 31201465), Natural Science Foundation of Jilin (201101018), College Students’ Innovative Experiment Project from Jilin University (2012A82219), and New Teacher Foundation from Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baolei Jia.

Additional information

Communicated by S. Albers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, B., Cheong, GW. & Zhang, S. Multifunctional enzymes in archaea: promiscuity and moonlight. Extremophiles 17, 193–203 (2013). https://doi.org/10.1007/s00792-012-0509-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-012-0509-1

Keywords

Navigation