Advertisement

Extremophiles

, Volume 17, Issue 1, pp 75–85 | Cite as

Extreme zinc tolerance in acidophilic microorganisms from the bacterial and archaeal domains

  • Stefanie MangoldEmail author
  • Joanna Potrykus
  • Erik Björn
  • Lars Lövgren
  • Mark Dopson
Original Paper

Abstract

Zinc can occur in extremely high concentrations in acidic, heavy metal polluted environments inhabited by acidophilic prokaryotes. Although these organisms are able to thrive in such severely contaminated ecosystems their resistance mechanisms have not been well studied. Bioinformatic analysis of a range of acidophilic bacterial and archaeal genomes identified homologues of several known zinc homeostasis systems. These included primary and secondary transporters, such as the primary heavy metal exporter ZntA and Nramp super-family secondary importer MntH. Three acidophilic model microorganisms, the archaeon ‘Ferroplasma acidarmanus’, the Gram negative bacterium Acidithiobacillus caldus, and the Gram positive bacterium Acidimicrobium ferrooxidans, were selected for detailed analyses. Zinc speciation modeling of the growth media demonstrated that a large fraction of the free metal ion is complexed, potentially affecting its toxicity. Indeed, many of the putative zinc homeostasis genes were constitutively expressed and with the exception of ‘F. acidarmanus’ ZntA, they were not up-regulated in the presence of excess zinc. Proteomic analysis revealed that zinc played a role in oxidative stress in At. caldus and Am. ferrooxidans. Furthermore, ‘F. acidarmanus’ kept a constant level of intracellular zinc over all conditions tested whereas the intracellular levels increased with increasing zinc exposure in the remaining organisms.

Keywords

Acid mine drainage Acidophile Metal resistance Modeling Zinc 

Notes

Acknowledgments

The authors acknowledge Caroline Ödling for her initial work on the bioinformatic predictions of zinc transporters, Siv Sääf for carrying out growth experiments, and Maria Liljeqvist for discussions and critical reading of the manuscript. This project was funded by the Swedish Research Council (Vetenskapsrådet contract number 621-2007-3537).

Supplementary material

792_2012_495_MOESM1_ESM.pdf (824 kb)
Supplementary material 1 (PDF 823 kb)

References

  1. Aguilar-Barajas E, Díaz-Pérez C, Ramírez-Díaz M, Riveros-Rosas H, Cervantes C (2011) Bacterial transport of sulfate, molybdate, and related oxyanions. Biometals 24:687–707PubMedCrossRefGoogle Scholar
  2. Almeida W, Vieira R, Cardoso A, Silveira C, Costa R, Gonzalez A et al (2009) Archaeal and bacterial communities of heavy metal contaminated acidic waters from zinc mine residues in Sepetiba Bay. Extremophiles 13:263–271PubMedCrossRefGoogle Scholar
  3. Alvarez S, Jerez CA (2004) Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans. Appl Environ Microbiol 70:5177–5182PubMedCrossRefGoogle Scholar
  4. Anton A, Groe C, Reimann J, Pribyl T, Nies DH (1999) CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34. J Bacteriol 181:6876–6881PubMedGoogle Scholar
  5. Baker-Austin C, Dopson M, Wexler M, Sawers G, Bond PL (2005) Molecular insight into extreme copper resistance in the extremophilic archaeon “Ferroplasma acidarmanus” Fer1. Microbiology 151:2637–2646PubMedCrossRefGoogle Scholar
  6. Beard SJ, Hughes MN, Poole RK (1995) Inhibition of the cytochrome bd-terminated NADH oxidase system in Escherichia coli K-12 by divalent metal cations. FEMS Microbiol Lett 131:205–210PubMedCrossRefGoogle Scholar
  7. Beard SJ, Hashim R, Membrillo-Hernández J, Hughes MN, Poole RK (1997) Zinc(II) tolerance in Escherichia coli K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase. Mol Microbiol 25:883–891PubMedCrossRefGoogle Scholar
  8. Blencowe DK, Morby AP (2003) Zn(II) metabolism in prokaryotes. FEMS Microbiol Rev 27:291–311PubMedCrossRefGoogle Scholar
  9. Braz VS, da Silva Neto JF, Italiani VCS, Marques MV (2010) CztR, a LysR-type transcriptional regulator involved in zinc homeostasis and oxidative stress defense in Caulobacter crescentus. J Bacteriol 192:5480–5488PubMedCrossRefGoogle Scholar
  10. Brocklehurst KR, Hobman JL, Lawley B, Blank L, Marshall SJ, Brown NL, Morby AP (1999) ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol Microbiol 31:893–902PubMedCrossRefGoogle Scholar
  11. Butcher BG, Deane SM, Rawlings DE (2000) The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl Environ Microbiol 66:1826–1833PubMedCrossRefGoogle Scholar
  12. Cellier MFM, Bergevin I, Boyer E, Richer E (2001) Polyphyletic origins of bacterial Nramp transporters. Trends Genet 17:365–370PubMedCrossRefGoogle Scholar
  13. Choudhury R, Srivastava S (2001) Zinc resistance mechanisms in bacteria. Curr Sci 81:768–775Google Scholar
  14. Ciavardelli D, Ammendola S, Ronci M, Consalvo A, Marzano V, Lipoma M et al (2011) Phenotypic profile linked to inhibition of the major Zn influx system in Salmonella enterica: proteomics and ionomics investigations. Mol BioSyst 7:608–619PubMedCrossRefGoogle Scholar
  15. Davies CW (1962) Ion Association. Butterworth, LondonGoogle Scholar
  16. Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC (2001) Biotic ligand model of the acute toxicity of metals. 1 Technical Basis. Environ Toxicol Chem 20:2383–2396PubMedCrossRefGoogle Scholar
  17. Dopson M, Lindström EB (1999) Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl Environ Microbiol 65:36–40PubMedGoogle Scholar
  18. Dopson M, Baker-Austin C, Koppineedi PR, Bond PL (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149:1959–1970PubMedCrossRefGoogle Scholar
  19. Dubbs JM, Mongkolsuk S (2007) Peroxiredoxins in bacterial antioxidant defense. In: Flohé L, Harris JR (eds) Peroxiredoxin systems. Springer, Netherlands, pp 143–193CrossRefGoogle Scholar
  20. Easton J, Thompson P, Crowder M (2006) Time-dependent translational response of E. coli to excess Zn(II). J Biomol Tech 17:303–307PubMedGoogle Scholar
  21. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763PubMedCrossRefGoogle Scholar
  22. Elvin CM, Hardy CM, Rosenberg H (1987) Molecular studies on the phosphate inorganic transport system of Escherichia coli. In: Torriani GA, Rothman FG, Silver S, Wright A, Yagil E (eds) Phosphate metabolism and cellular regulation in microorganisms. American Society for Microbiology, Washington, D.C, pp 156–158Google Scholar
  23. Eriksson G (1979) An algorithm for the computation of aqueous multicomponent, multiphase equilibria. Anal Chim Acta 112:375–383CrossRefGoogle Scholar
  24. Gaballa A, Helmann JD (2002) A peroxide-induced zinc uptake system plays an important role in protection against oxidative stress in Bacillus subtilis. Mol Microbiol 45:997–1005PubMedCrossRefGoogle Scholar
  25. Graham AI, Sanguinetti G, Bramall N, McLeod CW, Poole RK (2012) Dynamics of a starvation-to-surfeit shift: a transcriptomic and modelling analysis of the bacterial response to zinc reveals transient behaviour of the Fur and SoxS regulators. Microbiology 158:284–292PubMedCrossRefGoogle Scholar
  26. Grass G, Fan B, Rosen BP, Franke S, Nies DH, Rensing C (2001) ZitB (YbgR), a member of the cation diffusion facilitator family, is an additional zinc transporter in Escherichia coli. J Bacteriol 183:4664–4667PubMedCrossRefGoogle Scholar
  27. Grass G, Wong MD, Rosen BP, Smith RL, Rensing C (2002) ZupT is a Zn(II) uptake system in Escherichia coli. J Bacteriol 184:864–866PubMedCrossRefGoogle Scholar
  28. Heijerick DG, De Schamphelaere KAC, Janssen CR (2002) Biotic ligand model development predicting Zn toxicity to the alga Pseudokirchneriella subcapitata: possibilities and limitations. Comp Biochem Physiol C: Pharmacol Toxicol Endocrinol 133:207–218CrossRefGoogle Scholar
  29. Hudek L, Rai LC, Freestone D, Michalczyk A, Gibson M, Song YF, Ackland ML (2009) Bioinformatic and expression analyses of genes mediating zinc homeostasis in Nostoc punctiforme. Appl Environ Microbiol 75:784–791PubMedCrossRefGoogle Scholar
  30. Karlsson M, Lindgren J (2006) WinSGW, a user interface for SolGasWater. http://www.winsgw.se
  31. Kasahara M, Anraku Y (1974) Succinate- and NADH oxidase systems of Escherichia coli membrane vesicles. J Biochem 76:967–976PubMedGoogle Scholar
  32. Keasling JD (1997) Regulation of intracellular toxic metals and other cations by hydrolysis of polyphosphate. Ann NY Acad Sci 829:242–249PubMedCrossRefGoogle Scholar
  33. Kondratyeva TF, Muntyan LN, Karavaiko GI (1995) Zinc-resistant and arsenic-resistant strains of Thiobacillus ferrooxidans have increased copy numbers of chromosomal resistance genes. Microbiology 141:1157–1162CrossRefGoogle Scholar
  34. Lamarche MG, Wanner BL, Crépin S, Harel J (2008) The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol Rev 32:461–473PubMedCrossRefGoogle Scholar
  35. Mahapatra NR, Ghosh S, Deb C, Banerjee PC (2002) Resistance to cadmium and zinc in Acidiphilium symbioticum KM2 is plasmid mediated. Curr Microbiol 45:180–186PubMedCrossRefGoogle Scholar
  36. Mangold S, Valdés J, Holmes D, Dopson M (2011) Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus. Front Microbiol 2. doi: 10.3389/fmicb.2011.00017
  37. Matthews JM, Sunde M (2002) Zinc fingers—folds for many occasions. IUBMB Life 54:351–355PubMedCrossRefGoogle Scholar
  38. Mertens J, Degryse F, Springael D, Smolders E (2007) Zinc toxicity to nitrification in soil and soilless culture can be predicted with the same biotic ligand model. Environ Sci Technol 41:2992–2997PubMedCrossRefGoogle Scholar
  39. Moberly JG, Staven A, Sani RK, Peyton BM (2010) Influence of pH and inorganic phosphate on toxicity of zinc to Arthrobacter sp. isolated from heavy-metal-contaminated sediments. Environ Sci Technol 44:7302–7308PubMedCrossRefGoogle Scholar
  40. Moomaw AS, Maguire ME (2008) The unique nature of Mg2+ channels. Physiology 23:275–285PubMedCrossRefGoogle Scholar
  41. Nancucheo I, Johnson DB (2010) Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia. Appl Environ Microbiol 76:461–467PubMedCrossRefGoogle Scholar
  42. Navarro CA, Orellana LH, Mauriaca C, Jerez CA (2009) Transcriptional and functional studies of Acidithiobacillus ferrooxidans genes related to survival in the presence of copper. Appl Environ Microbiol 75:6102–6109PubMedCrossRefGoogle Scholar
  43. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750PubMedCrossRefGoogle Scholar
  44. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339PubMedCrossRefGoogle Scholar
  45. Nies D, Mergeay M, Friedrich B, Schlegel HG (1987) Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34. J Bacteriol 169:4865–4868PubMedGoogle Scholar
  46. Nordstrom DK, Alpers CN (1999) Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the iron mountain superfund site, California. Proc Natl Acad Sci USA 96:3455–3462PubMedCrossRefGoogle Scholar
  47. Nucifora G, Chu L, Misra TK, Silver S (1989) Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc Natl Acad Sci USA 86:3544–3548PubMedCrossRefGoogle Scholar
  48. Orell A, Navarro CA, Arancibia R, Mobarec JC, Jerez CA (2010) Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals. Biotechnol Adv 28:839–848PubMedCrossRefGoogle Scholar
  49. Pagani MA, Casamayor A, Serrano R, Atrian S, Ariño J (2007) Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study. Mol Microbiol 65:521–537PubMedCrossRefGoogle Scholar
  50. Parkson Lee-Gau C (2010) Archaebacterial bipolar tetraether lipids: physico-chemical and membrane properties. Chem Phys Lipids 163:253–265CrossRefGoogle Scholar
  51. Patzer SI, Hantke K (1998) The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 28:1199–1210PubMedCrossRefGoogle Scholar
  52. Potrykus J, Jonna VR, Dopson M (2011) Iron homeostasis and responses to iron limitation in extreme acidophiles from the Ferroplasma genus. Proteomics 11:52–63PubMedCrossRefGoogle Scholar
  53. Renshaw JC, Butchins LJC, Livens FR, May I, Charnock JM, Lloyd JR (2005) Bioreduction of uranium: environmental implications of a pentavalent intermediate. Environ Sci Technol 39:5657–5660PubMedCrossRefGoogle Scholar
  54. Rensing C, Mitra B, Rosen BP (1997) The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci USA 94:14326–14331PubMedCrossRefGoogle Scholar
  55. Rzhepishevska O, Ekstrand-Hammarström B, Popp M, Björn E, Bucht A, Sjöstedt A et al (2011) The antibacterial activity of Ga3+ is influenced by ligand complexation as well as the bacterial carbon source. Antimicrob Agents Chemother 55:5568–5580PubMedCrossRefGoogle Scholar
  56. Sigdel T, Cilliers R, Gursahaney P, Thompson P, Easton J, Crowder M (2006) Probing the adaptive response of Escherichia coli to extracellular Zn(II). Biometals 19:461–471PubMedCrossRefGoogle Scholar
  57. Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA, Robert KP (2009) Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 55(1–79):317Google Scholar
  58. Smith KS (2007) Strategies to predict metal mobility in surficial mining environments. Understanding and responding to hazardous substances at mine sites in the Western United States. Geological Society of America, Inc., Boulder, pp 25–44Google Scholar
  59. Thelwell C, Robinson NJ, Turner-Cavet JS (1998) An SmtB-like repressor from Synechocystis PCC 6803 regulates a zinc exporter. Proc Natl Acad Sci USA 95:10728–10733PubMedCrossRefGoogle Scholar
  60. Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH, Goffeau A, Saier MH (1999) The RND permease superfamily: an ancient ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1:107–125PubMedGoogle Scholar
  61. Vallee BL, Auld DS (1990) Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29:5647–5659PubMedCrossRefGoogle Scholar
  62. van Veen HW (1997) Phosphate transport in prokaryotes: molecules, mediators and mechanisms. Antonie Van Leeuwenhoek 72:299–315PubMedCrossRefGoogle Scholar
  63. van Zyl LJ, van Munster JM, Rawlings DE (2008) Construction of arsB and tetH mutants of the sulfur-oxidizing bacterium Acidithiobacillus caldus by marker exchange. Appl Environ Microbiol 74:5686–5694PubMedCrossRefGoogle Scholar
  64. Worlock AJ, Smith RL (2002) ZntB is a novel Zn2+ transporter in Salmonella enterica Serovar Typhimurium. J Bacteriol 184:4369–4373PubMedCrossRefGoogle Scholar
  65. Zammit C, Mangold S, rao Jonna V, Mutch L, Watling H, Dopson M, Watkin E (2012) Bioleaching in brackish waters—effect of chloride ions on the acidophile population and proteomes of model species. Appl Microbiol Biotechnol 93:319–329PubMedCrossRefGoogle Scholar
  66. Zeng J, Wang W-X (2009) The importance of cellular phosphorus in controlling the uptake and toxicity of cadmium and zinc in Microcystis Aeruginosa, a freshwater cyanobacterium. Environ Toxicol Chem 28:1618–1626PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2012

Authors and Affiliations

  • Stefanie Mangold
    • 1
    Email author
  • Joanna Potrykus
    • 1
    • 4
  • Erik Björn
    • 2
  • Lars Lövgren
    • 2
  • Mark Dopson
    • 1
    • 3
  1. 1.Molecular BiologyUmeå UniversityUmeåSweden
  2. 2.Department of ChemistryUmeå UniversityUmeåSweden
  3. 3.Centre for Ecology and Evolution in Microbial Model Systems, School of Natural SciencesLinnaeus UniversityKalmarSweden
  4. 4.Aberdeen Fungal GroupUniversity of AberdeenScotlandUK

Personalised recommendations