Extremophiles

, Volume 16, Issue 6, pp 895–901 | Cite as

Halohasta litorea gen. nov. sp. nov., and Halohasta litchfieldiae sp. nov., isolated from the Daliang aquaculture farm, China and from Deep Lake, Antarctica, respectively

Original Paper

Abstract

Two halophilic archaeal strains, R30T and tADLT, were isolated from an aquaculture farm in Dailing, China, and from Deep Lake, Antarctica, respectively. Both have rod-shaped cells that lyse in distilled water, stain Gram-negative and form red-pigmented colonies. They are neutrophilic, require >120 g/l NaCl and 48–67 g/l MgCl2 for growth but differ in their optimum growth temperatures (30 °C, tADLT vs. 40 °C, R30T). The major polar lipids were typical for members of the Archaea but also included a major glycolipid chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-1). The 16S rRNA gene sequences of the two strains are 97.4 % identical, show most similarity to genes of the family Halobacteriaceae, and cluster together as a distinct clade in phylogenetic tree reconstructions. The rpoB′ gene similarity between strains R30T and tADLT is 92.9 % and less to other halobacteria. Their DNA G + C contents are 62.4–62.9 mol % but DNA–DNA hybridization gives a relatedness of only 44 %. Based on phenotypic, chemotaxonomic and phylogenetic properties, we describe two new species of a novel genus, represented by strain R30T (= CGMCC 1.10593T = JCM 17270T) and strain tADLT (= JCM 15066T = DSMZ 22187T) for which we propose the names Halohasta litorea gen. nov., sp. nov. and Halohasta litchfieldiae sp. nov., respectively.

Keywords

Halohasta litorea gen. nov., sp. nov. Halohasta litchfieldiae sp. nov. Halophilic archaea Deep Lake Marine solar saltern 

Supplementary material

792_2012_485_MOESM1_ESM.doc (2.5 mb)
Supplementary material 1 (DOC 2598 kb)

References

  1. Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004) Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol 70:5258–5265PubMedCrossRefGoogle Scholar
  2. Burns DG, Janssen PH, Itoh T, Kamekura M, Echigo A, Dyall-Smith ML (2010) Halonotius pteroides gen. nov., sp. nov., an extremely halophilic archaeon recovered from a saltern crystallizer in southern Australia. Int J Syst Evol Microbiol 60:1196–1199PubMedCrossRefGoogle Scholar
  3. Cui HL, Lin ZY, Dong Y, Zhou PJ, Liu SJ (2007) Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 57:2204–2206PubMedCrossRefGoogle Scholar
  4. Cui HL, Zhou PJ, Oren A, Liu SJ (2009) Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium. Extremophiles 13:31–37PubMedCrossRefGoogle Scholar
  5. Cui HL, Gao X, Sun FF, Dong Y, Xu XW, Zhou YG, Liu HC, Oren A, Zhou PJ (2010a) Halogranum rubrum gen. nov., sp. nov., a halophilic archaeon isolated from a marine solar saltern. Int J Syst Evol Microbiol 60:1366–1371PubMedCrossRefGoogle Scholar
  6. Cui HL, Gao X, Yang X, Xu XW (2010b) Halorussus rarus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Extremophiles 14:493–499PubMedCrossRefGoogle Scholar
  7. Cui HL, Gao X, Yang X, Xu XW (2011a) Halolamina pelagica gen. nov., sp. nov., a new member of the family Halobacteriaceae. Int J Syst Evol Microbiol 61:1617–1621PubMedCrossRefGoogle Scholar
  8. Cui HL, Yang X, Mou YZ (2011b) Salinarchaeum laminariae gen. nov., sp. nov.: a new member of the family Halobacteriaceae isolated from salted brown alga Laminaria. Extremophiles 15:625–631PubMedCrossRefGoogle Scholar
  9. Cui HL, Mou YZ, Yang X, Zhou YG, Liu HC, Zhou PJ (2012) Halorubellus salinus gen. nov., sp. nov. and Halorubellus litoreus sp. nov., novel halophilic archaea isolated from a marine solar saltern. Syst Appl Microbiol 35:30–34PubMedCrossRefGoogle Scholar
  10. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142PubMedCrossRefGoogle Scholar
  11. Dussault HP (1955) An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485PubMedGoogle Scholar
  12. Dyall-Smith ML (2009) The Halohandbook: protocols for haloarchaeal genetics. http://www.haloarchaea.com/resources/halohandbook
  13. Gonzalez C, Gutierrez C, Ramirez C (1978) Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715PubMedCrossRefGoogle Scholar
  14. Gutiérrez C, González C (1972) Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. Appl Microbiol 24:516–517PubMedGoogle Scholar
  15. Gutiérrez MC, Castillo AM, Kamekura M, Ventosa A (2008) Haloterrigena salina sp. nov., an extremely halophilic archaeon isolated from a salt lake. Int J Syst Evol Microbiol 58:2880–2884PubMedCrossRefGoogle Scholar
  16. Huß VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192CrossRefGoogle Scholar
  17. Kamekura M, Mizuki T, Usami R, Yoshida Y, Horikoshi K, Vreeland RH (2004) The potential use of signature bases from 16S rRNA gene sequences to aid the assignment of microbial strains to genera of halobacteria. In: Ventosa A (ed) Halophilic microorganisms. Springer, Heidelberg, pp 77–87Google Scholar
  18. Makhdoumi-Kakhki A, Amoozegar MA, Bagheri M, Ramezani M, Ventosa A (2012a) Haloarchaeobius iranensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from the saline lake Aran-Bidgol. Iran Int J Syst Evol Microbiol 62:1021–1026CrossRefGoogle Scholar
  19. Makhdoumi-Kakhki A, Amoozegar MA, Ventosa A (2012b) Halovenus aranensis gen. nov., sp. nov., a novel extremely halophilic archaeon from Aran-Bidgol salt lake. Iran Int J Syst Evol Microbiol 62:1331–1336CrossRefGoogle Scholar
  20. Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118PubMedCrossRefGoogle Scholar
  21. McDade JJ, Weaver RH (1959) Rapid methods for the detection of gelatin hydrolysis. J Bacteriol 77:60–64PubMedGoogle Scholar
  22. Minegishi H, Kamekura M, Itoh T, Echigo A, Usami R, Hashimoto T (2010) Further refinement of Halobacteriaceae phylogeny based on the full-length RNA polymerase subunit B (rpoB ) gene. Int J Syst Evol Microbiol 60:2398–2408PubMedCrossRefGoogle Scholar
  23. Oren A (2006) The order Halobacteriales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 3, vol 3, 3rd edn. Springer, New York, pp 113–164CrossRefGoogle Scholar
  24. Oren A, Ventosa A, Grant WD (1997) Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47:233–238CrossRefGoogle Scholar
  25. Owen RJ, Pitcher D (1985) Current methods for estimating DNA base composition and levels of DNA–DNA hybridization. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 67–93Google Scholar
  26. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  27. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2012

Authors and Affiliations

  1. 1.School of Food and Biological EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.AdelaideAustralia
  3. 3.School of Biomedical SciencesCharles Sturt UniversityWagga WaggaAustralia

Personalised recommendations