Skip to main content
Log in

The β-barrel assembly machinery (BAM) is required for the assembly of a primitive S-layer protein in the ancient outer membrane of Thermus thermophilus

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The ancient bacterial lineage Thermus spp has a primitive form of outer membrane attached to the cell wall through SlpA, a protein that shows intermediate properties between S-layer proteins and outer membrane (OM) porins. In E. coli and related Proteobacteria, porins are secreted through the BAM (β-barrel assembly machinery) pathway, whose main component is BamA. A homologue to this protein is encoded in all the Thermus spp so far sequenced, so we wondered if this pathway could be responsible for SlpA secretion in this ancient bacterial model. To analyse this hypothesis, we attempted to get mutants on this BamAth of T. thermophilus HB27. Knockout and deletion mutants lacking the last 10 amino acids were not viable, whereas its depletion by means of a BamA antisense RNA lead defective attachment to the cell wall of its OM-like envelope. Such defects were related to defective folding of the SlpA protein that was more sensitive to proteases than in a wild-type strain. A similar phenotype was found in mutants lacking the terminal Phe of SlpA. Further protein–protein interaction assays confirmed the existence of specific binding between SlpA and BamAth. Taking together, these data suggest that SlpA is secreted through a BAM-like pathway in this ancestral bacterial lineage, supporting an ancient origin of this pathway before the evolution of the Proteobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acosta F, Álvarez L, de Pedro MA, Berenguer J (2012) Localized synthesis of the outer envelope from Thermus thermophilus. Extremophiles 16:267–275

    Article  PubMed  CAS  Google Scholar 

  • Bos MP, Robert V, Tommassen J (2007) Biogenesis of the gram-negative bacterial outer membrane. Annu Rev Microbiol 61:191–214

    Article  PubMed  CAS  Google Scholar 

  • Brosig A, Nesper J, Boos W, Welte W, Diederichs K (2009) Crystal structure of a major outer membrane protein from Thermus thermophilus HB27. J Mol Biol 385:1445–1455

    Article  PubMed  CAS  Google Scholar 

  • Castán P, Zafra O, Moreno R, de Pedro MA, Vallés C, Cava F, Caro E, Schwarz H, Berenguer J (2002) The periplasmic space in Thermus thermophilus: evidence from a regulation-defective S-layer mutant overexpressing an alkaline phosphatase. Extremophiles 6:225–232

    Article  PubMed  Google Scholar 

  • Castón J, Carrascosa J, de Pedro M, Berenguer J (1988) Identification of a crystalline layer on the cell envelope of the thermophilic eubacterium Thermus thermophilus. FEMS Lett. 51:225–230

    Article  Google Scholar 

  • Castón JR, Berenguer J, de Pedro MA, Carrascosa JL (1993) S-layer protein from Thermus thermophilus HB8 assembles into porin-like structures. Mol Microbiol 9:65–75

    Article  PubMed  Google Scholar 

  • Cava F, de Pedro MA, Schwarz H, Henne A, Berenguer J (2004) Binding to pyruvylated compounds as an ancestral mechanism to anchor the outer envelope in primitive bacteria. Mol Microbiol 52:677–690

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2006) Rooting the tree of life by transition analysis. Biol Direct 1:19–102

    Article  PubMed  Google Scholar 

  • de Grado M, Lasa I, Berenguer J (1998) Characterization of a plasmid replicative origin from an extreme thermophile. FEMS Microbiol Lett 165:51–57

    Article  PubMed  Google Scholar 

  • de Grado M, Castán P, Berenguer J (1999) A high-transformation efficiency cloning vector for Thermus. Plasmid 42:241–245

    Article  PubMed  Google Scholar 

  • Doerrler WT, Raetz CR (2005) Loss of outer membrane proteins without inhibition of lipid export in an Escherichia coli YaeT mutant. J Biol Chem 280:27679–27687

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt H, Peters J (1998) Structural research on surface layers: a focus on stability, surface layer homology domains, and surface layer–cell wall interactions. J Struct Biol 124:276–302

    Article  PubMed  CAS  Google Scholar 

  • Eppens EF, Nouwen N, Tommassen J (1997) Folding of a bacterial outer membrane protein during passage through the periplasm. EMBO J 16:4295–4301

    Article  PubMed  CAS  Google Scholar 

  • Faraldo ML, de Pedro MA, Berenguer J (1991) Cloning and expression in Escherichia coli of the structural gene coding for the monomeric protein of the S layer of Thermus thermophilus HB8. J Bacteriol 173:5346–5351

    PubMed  CAS  Google Scholar 

  • Fernandez-Herrero LA, Olabarría G, Castón JR, Lasa I, Berenguer J (1995) Horizontal transference of S-layer genes within Thermus thermophilus. J Bacteriol 177:5460–5466

    PubMed  CAS  Google Scholar 

  • Hagan CL, Silhavy TJ, Kahne D (2011) β-Barrel membrane protein assembly by the Bam complex. Annu Rev Biochem 80:189–210

    Article  PubMed  CAS  Google Scholar 

  • Hartmann RK, Erdmann VA (1989) Thermus thermophilus 16S rRNA is transcribed from an isolated transcription unit. J Bacteriol 171:2933–2941

    PubMed  CAS  Google Scholar 

  • Klose M, Schwarz H, MacIntyre S, Freudl R, Eschbach ML, Henning U (1988) Internal deletions in the gene for an Escherichia coli outer membrane protein define an area possibly important for recognition of the outer membrane by this polypeptide. J Biol Chem 263:13291–13296

    PubMed  CAS  Google Scholar 

  • Knowles TJ, Scott-Tucker A, Overduin M, Henderson IR (2009) Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nat Rev Microbiol 7:206–214

    Article  PubMed  CAS  Google Scholar 

  • Koyama Y, Hoshino T, Tomizuka N, Furukawa K (1986) Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp. J Bacteriol 166:338–340

    PubMed  CAS  Google Scholar 

  • Laemmli U, Favre M (1973) Maturation of the head of bacteriophage T4.I. DNA packaging events. J Mol Biol 80:575–599

    Article  PubMed  CAS  Google Scholar 

  • Lasa I, Castón JR, Fernandez-Herrero LA, de Pedro MA, Berenguer J (1992) Insertional mutagenesis in the extreme thermophilic eubacteria Thermus thermophilus HB8. Mol Microbiol 6:1555–1564

    Article  PubMed  CAS  Google Scholar 

  • Moreno R, Hidalgo A, Cava F, Fernandez-Lafuente R, Guisán JM, Berenguer J (2004) Use of an antisense RNA strategy to investigate the functional significance of Mn-catalase in the extreme thermophile Thermus thermophilus. J Bacteriol 186:7804–7806

    Article  PubMed  CAS  Google Scholar 

  • Nesper J, Brosig A, Ringler P, Patel GJ, Muller SA, Kleinschmidt JH, Boos W, Diederichs K, Welte W (2008) Omp85(Tt) from Thermus thermophilus HB27: an ancestral type of the Omp85 protein family. J Bacteriol 190:4568–4575

    Article  PubMed  CAS  Google Scholar 

  • Olabarría G, Carrascosa JL, de Pedro MA, Berenguer J (1996) A conserved motif in S-layer proteins is involved in peptidoglycan binding in Thermus thermophilus. J Bacteriol 178:4765–4772

    PubMed  Google Scholar 

  • Quintela JC, Pittenauer E, Allmaier G, Arán V, de Pedro MA (1995) Structure of peptidoglycan from Thermus thermophilus HB8. J Bacteriol 177:4947–4962

    PubMed  CAS  Google Scholar 

  • Ramírez-Arcos S, Fernandez-Herrero LA, Berenguer J (1998) A thermophilic nitrate reductase is responsible for the strain specific anaerobic growth of Thermus thermophilus HB8. Biochim Biophys Acta 1396:215–227

    Article  PubMed  Google Scholar 

  • Voulhoux R, Bos MP, Geurtsen J, Mols M, Tommassen J (2003) Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299:262–265

    Article  PubMed  CAS  Google Scholar 

  • Werner J, Misra R (2005) YaeT (Omp85) affects the assembly of lipid-dependent and lipid-independent outer membrane proteins of Escherichia coli. Mol Microbiol 57:1450–1459

    Article  PubMed  CAS  Google Scholar 

  • Wu T, Malinverni J, Ruiz N, Kim S, Silhavy TJ, Kahne D (2005) Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121:235–245

    Article  PubMed  CAS  Google Scholar 

  • Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, Hooper SD, Pati A, Lykidis A, Spring S, Anderson IJ, D’Haeseleer P, Zemla A, Singer M, Lapidus A, Nolan M, Copeland A, Han C, Chen F, Cheng JF, Lucas S, Kerfeld C, Lang E, Gronow S, Chain P, Bruce D, Rubin EM, Kyrpides NC, Klenk HP, Eisen JA (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by grant BIO2010-18875 from the Spanish Ministry of Science. An institutional grant from Fundación Ramón Areces to CBMSO is acknowledged. F. Acosta was funded by a FPI fellowship from the Ministry of Education. We thank Jutta Nesper for providing the antiserum against the BamAth protein and L.A. Fernández-Herrero for critical reading of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Berenguer.

Additional information

Communicated by S. Albers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acosta, F., Ferreras, E. & Berenguer, J. The β-barrel assembly machinery (BAM) is required for the assembly of a primitive S-layer protein in the ancient outer membrane of Thermus thermophilus . Extremophiles 16, 853–861 (2012). https://doi.org/10.1007/s00792-012-0480-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-012-0480-x

Keywords

Navigation