Skip to main content

Advertisement

Log in

Screening of anaerobic activities in sediments of an acidic environment: Tinto River

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The Tinto River (Huelva, Spain) is a natural acidic rock drainage environment produced by the bio-oxidation of metallic sulfides from the Iberian Pyritic Belt. A geomicrobiological model of the different microbial cycles operating in the sediments was recently developed through molecular biological methods, suggesting the presence of iron reducers, methanogens, nitrate reducers and hydrogen producers. In this study, we used a combination of molecular biological methods and targeted enrichment incubations to validate this model and prove the existence of those potential anaerobic activities in the acidic sediments of Tinto River. Methanogenic, sulfate-reducing, denitrifying and hydrogen-producing enrichments were all positive at pH between 5 and 7. Methanogenic enrichments revealed the presence of methanogenic archaea belonging to the genera Methanosarcina and Methanobrevibacter. Enrichments for sulfate-reducing microorganisms were dominated by Desulfotomaculum spp. Denitrifying enrichments showed a broad diversity of bacteria belonging to the genera Paenibacillus, Bacillus, Sedimentibacter, Lysinibacillus, Delftia, Alcaligenes, Clostridium and Desulfitobacterium. Hydrogen-producing enrichments were dominated by Clostridium spp. These enrichments confirm the presence of anaerobic activities in the acidic sediments of the Tinto River that are normally assumed to take place exclusively at neutral pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilera A, Manrubia SC, Gomez F, Rodriguez N, Amils R (2006) Eukaryotic community distribution and its relationship to water physicochemical parameters in an extreme acidic environment, Rio Tinto (Southwestern Spain). Appl Environ Microbiol 72:5325–5330

    Article  PubMed  CAS  Google Scholar 

  • Aguilera A, Souza-Egipsy V, Gomez F, Amils R (2007a) Development and structure of eukaryotic biofilms in an extreme acidic environment, Río Tinto (SW, Spain). Microb Ecol 53:294–305

    Article  PubMed  Google Scholar 

  • Aguilera A, Zettler E, Gómez F, Amaral-Zettler L, Rodríguez N, Amils R (2007b) Distribution and seasonal variability in the benthic eukaryotic community of Río Tinto (SW, Spain), an acidic, high metal extreme environment. Syst Appl Microbiol 30:531–546

    Article  PubMed  CAS  Google Scholar 

  • Amils R, Fernández-Remolar D, Gómez F, González-Toril E, Rodríguez N, Briones C, Prieto-Ballesteros O, Sanz JL, Díaz E, Stevens TO (2008) Subsurface geomicrobiology of the Iberian Pyritic Belt. In: Dion P, Nautiyal CS (eds) Soil biology: microbiology of extreme soils, vol 13. Springer, Berlin, pp 205–223

    Chapter  Google Scholar 

  • Asakawa S, Morii H, Akagawa-Matsushita M, Koga Y, Hayano K (1993) Characterization of Methanobrevibacter arboriphilicus SA isolated from a paddy field soil and DNA-DNA hybridization among M. arboriphilicus strains. Int J Syst Bacteriol 43:683–686

    Article  Google Scholar 

  • Baeseman JL, Smith RL, Silverstein J (2006) Denitrification potential in stream sediments impacted by acid mine drainage: effects of pH, various electron donors, and iron. Microb Ecol 51:232–241

    Article  PubMed  CAS  Google Scholar 

  • Banda RMH, Dance IG, Bailey TD, Craig DC, Scudder ML (1989) Cadmium polysulfide complexes, [Cd (Sx)(Sy)] 2-: syntheses, crystal and molecular structures, and cadmium-113 NMR studies. Inorg Chem 28:1862–1871

    Article  CAS  Google Scholar 

  • Bijmans MFM, de Vries E, Yang CH, Buisman CJN, Lens PNL, Dopson M (2010) Sulfate reduction at pH 4.0 for treatment of process and wastewaters. Biotechnol Prog 26:1029–1039

    PubMed  CAS  Google Scholar 

  • Blösl M, Conrad R (1992) Influence of an increased pH on the composition of the nitrate-reducing microbial populations in an anaerobically incubated acidic forest soil. Syst Appl Microbiol 15:624–627

    Article  Google Scholar 

  • Blothe M, Akob DM, Kostka JE, Goschel K, Drake HL, Kusel K (2008) pH gradient-induced heterogeneity of Fe(III)-reducing microorganisms in coal mining-associated lake sediments. Appl Environ Microbiol 74:1019–1029

    Article  PubMed  Google Scholar 

  • Bräuer SL, Yavitt JB, Zinder SH (2004) Methanogenesis in McLean Bog, an acidic peat bog in upstate New York: stimulation by H2/CO2 in the presence of rifampicin, or by low concentrations of acetate. Geomicrobiol J 21:433–443

    Article  Google Scholar 

  • Burggraf S, Huber H, Stetter K (1997) Reclassification of the crenarchaeal orders and families in accordance with 16S rRNA sequence data. Int J Syst Bacteriol 47:657–660

    Article  PubMed  CAS  Google Scholar 

  • Cadillo-Quiroz H, Yashiro E, Yavitt JB, Zinder SH (2008) Characterization of the archaeal community in a minerotrophic fen and terminal restriction fragment length polymorphism-directed isolation of a novel hydrogenotrophic methanogen. Appl Environ Microbiol 74:2059–2068

    Article  PubMed  CAS  Google Scholar 

  • Campbell LL, Postgate JR (1965) Classification of the spore-forming sulfate-reducing bacteria. Microbiol Mol Biol Rev 29:359–362

    CAS  Google Scholar 

  • Church CD, Wilkin RT, Alpers CN, Rye RO, McCleskey RB (2007) Microbial sulfate reduction and metal attenuation in pH 4 acid mine water. Geochem Trans 8:10

    Article  PubMed  Google Scholar 

  • Dolfing J, Xu A, Head IM (2010) Anomalous energy yields in thermodynamic calculations: importance of accounting for pH-dependent organic acid speciation. The ISME Journal 4:463–464

    Article  PubMed  Google Scholar 

  • Dunfield P, Dumont R, Moore TR (1993) Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biol Biochem 25:321–326

    Article  CAS  Google Scholar 

  • Fernández-Remolar DC, Prieto-Ballesteros O, Rodríguez N, Gómez F, Amils R, Gómez-Elvira J, Stoker CR (2008) Underground habitats in the Río Tinto Basin: a model for subsurface life habitats on Mars. Astrobiology 8:1023–1047

    Article  PubMed  Google Scholar 

  • Florencio L, Nozhevnikova A, Van Langerak A, Stams AJM, Field JA, Lettinga G (1993) Acidophilic degradation of methanol by a methanogenic enrichment culture. FEMS Microbiol Lett 109:1–6

    Article  CAS  Google Scholar 

  • García-Moyano A, González-Toril E, Aguilera A, Amils R (2007) Prokaryotic community composition and ecology of floating macroscopic filaments from an extreme acidic environment, Río Tinto (SW, Spain). Syst Appl Microbiol 30:601–614

    Article  PubMed  Google Scholar 

  • Ghose TK, Wikén T (1955) Inhibition of bacterial sulphate-reduction in presence of short chain fatty acids. Physiol Plantarum 8:116–135

    Article  CAS  Google Scholar 

  • Gonzalez-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003) Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol 69:4853–4865

    Article  PubMed  CAS  Google Scholar 

  • Goodwin S, Zeikus JG (1987) Ecophysiological adaptations of anaerobic bacteria to low pH: analysis of anaerobic digestion in acidic bog sediments. Appl Environ Microbiol 53:57–64

    PubMed  CAS  Google Scholar 

  • Hao C, Zhang H, Haas R, Bai Z, Zhang B (2007) A novel community of acidophiles in an acid mine drainage sediment. World J Microbiol Biotechnol 23:15–21

    Article  Google Scholar 

  • Horn MA, Matthies C, Kusel K, Schramm A, Drake HL (2003) Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. Appl Environ Microbiol 69:74–83

    Article  PubMed  CAS  Google Scholar 

  • Hu B, Chen S (2007) Pretreatment of methanogenic granules for immobilized hydrogen fermentation. Int J Hydrogen Energy 32:3266–3273

    Article  CAS  Google Scholar 

  • Huang LN, Chen YQ, Zhou H, Luo S, Lan CY, Qu LH (2003) Characterization of methanogenic Archaea in the leachate of a closed municipal solid waste landfill. FEMS Microbiol Ecol 46:171–177

    Article  PubMed  CAS  Google Scholar 

  • Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14

    Article  PubMed  CAS  Google Scholar 

  • Klonowska A, Clark M, Thieman S, Giles B, Wall J, Fields M (2008) Hexavalent chromium reduction in Desulfovibrio vulgaris Hildenborough causes transitory inhibition of sulfate reduction and cell growth. Appl Microbiol Biotechnol 78:1007–1016

    Article  PubMed  CAS  Google Scholar 

  • Koschorreck M (2008) Microbial sulphate reduction at a low pH. FEMS Microbiol Ecol 64:329–342

    Article  PubMed  CAS  Google Scholar 

  • Koschorreck M, Wendt-Potthoff K, Scharf B, Richnow HH (2008) Methanogenesis in the sediment of the acidic Lake Caviahue in Argentina. J Volcanol Geotherm Res 178:197–204

    Article  CAS  Google Scholar 

  • Lin B, Hyacinthe C, Bonneville S, Braster M, Van Cappellen P, Röling WFM (2007) Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheldt estuary, Northwest Europe. Environ Microbiol 9:1956–1968

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Archilla AI, Marin I, Amils R (2001) Microbial community composition and ecology of an acidic aquatic environment: the Tinto River, Spain. Microb Ecol 41:20–35

    PubMed  CAS  Google Scholar 

  • López-Archilla AI, González AE, Terrón MC, Amils R (2005) Diversity and ecological relationships of the fungal populations of an acidic river of Southwestern Spain: the Tinto River. Can J Microbiol 50:923–934

    Article  Google Scholar 

  • Lu S, Gischkat S, Reiche M, Akob DM, Hallberg KB, Kusel K (2010) Ecophysiology of Fe-cycling bacteria in acidic sediments. Appl Environ Microbiol 76:8174–8183

    Article  PubMed  CAS  Google Scholar 

  • Maestrojuán GM, Boone DR (1991) Characterization of Methanosarcina barkeri MST and 227, Methanosarcina mazei S-6T, and Methanosarcina vacuolata Z-761T. Int J Syst Bacteriol 41:267–274

    Article  Google Scholar 

  • Manaia CM, Costa MS (1991) Characterization of halotolerant Thermus isolates from shallow marine hot springs on S. Miguel, Azores. J Gen Microbiol 137:2643–2648

    Article  CAS  Google Scholar 

  • Manish S, Banerjee R (2008) Comparison of biohydrogen production processes. Int J Hydrogen Energy 33:279–286

    Article  CAS  Google Scholar 

  • Mateju V, Cizinska S, Krejci J, Janoch T (1992) Biological water denitrification—a review. Enzyme Microb Technol 14:170–183

    Article  CAS  Google Scholar 

  • Muyzer G, Ramsing NB (1995) Molecular methods to study the organization of microbial communities. Water Sci Technol 32:1–9

    CAS  Google Scholar 

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454

    PubMed  CAS  Google Scholar 

  • Nagele W, Conrad R (1990) Influence of soil pH on the nitrate-reducing microbial populations and their potential to reduce nitrate to NO and N2O. FEMS Microbiol Lett 74:49–57

    Article  Google Scholar 

  • Nandi R, Sengupta S (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24:61–84

    Article  PubMed  CAS  Google Scholar 

  • Rajhi H, Conthe M, Puyol D, Díaz E, Sanz JL (2012) Dark fermentation: Isolation and characterization of hydrogen-producing strains from different sludges. Bioresource Technol (submitted)

  • Rea S, Bowman JP, Popovski S, Pimm C, Wright ADG (2007) Methanobrevibacter millerae sp. nov. and Methanobrevibacter olleyae sp. nov., methanogens from the ovine and bovine rumen that can utilize formate for growth. Int J Syst Evol Microbiol 57:450–456

    Article  PubMed  CAS  Google Scholar 

  • Sakai S, Imachi H, Sekiguchi Y, Ohashi A, Harada H, Kamagata Y (2007) Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I. Appl Environ Microbiol 73:4326–4331

    Article  PubMed  CAS  Google Scholar 

  • Sánchez I, Fernández N, Amils R, Sanz JL (2008) Assessment of the addition of “Thiobacillus denitrificans” and “Thiomicrospira denitrificans” to chemolithoautotrophic denitrifying bioreactors. Int Microbiol 11:179–184

    PubMed  Google Scholar 

  • Sánchez-Andrea I, Rodriguez N, Amils R, Sanz JL (2011) Microbial diversity in anaerobic sediments at Rio Tinto, a naturally acidic environment with a high heavy metal content. Appl Environ Microbiol 77:6085–6093

    Article  PubMed  Google Scholar 

  • Sánchez-Andrea I, Knittel K, Amann R, Amils R, Sanz JL (2012a) Quantification of Tinto River sediment microbial communities: the importance of sulfate-reducing bacteria and their role in attenuating acid mine drainage. Appl Environ Microbiol 78(13):4638–4645

    Article  PubMed  Google Scholar 

  • Sánchez-Andrea I, Triana D, Sanz JL (2012b) Bioremediation of acid mine drainage coupled with domestic wastewater treatment. Water Sci Technol (in press)

  • Sanz JL, Rodriguez N, Amils R (1997) Effect of chlorinated aliphatic hydrocarbons on the acetoclastic methanogenic activity of granular sludge. Appl Microbiol Biotechnol 47:324–328

    Article  CAS  Google Scholar 

  • Sanz JL, Rodríguez N, Díaz EE, Amils R (2011) Methanogenesis in the sediments of Rio Tinto, an extreme acidic river. Environ Microbiol 13:2336–2341

    Article  PubMed  CAS  Google Scholar 

  • Show K, Lee D, Chang J (2011) Bioreactor and process design for biohydrogen production. Biores Technol 102:8524–8533

    Article  CAS  Google Scholar 

  • Simek M, Jisova L, Hopkins DW (2002) What is the so-called optimum pH for denitrification in soil. Soil Biol Biochem 34:1227–1234

    Article  CAS  Google Scholar 

  • Stahl DA, Amann R (1991) Development and application of nucleic acid probes. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 205–228

    Google Scholar 

  • Staley BF, de los Reyes FL III, Barlaz MA (2011) Effect of spatial differences in microbial activity, pH, and substrate levels on methanogenesis initiation in refuse. Appl Environ Microbiol 77:2381–2391

    Article  PubMed  CAS  Google Scholar 

  • Ueno Y, Haruta S, Ishii M, Igarashi Y (2001) Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl Microbiol Biotechnol 57:555–562

    Article  PubMed  CAS  Google Scholar 

  • Valls M, Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338

    PubMed  CAS  Google Scholar 

  • Verbaendert I, De Vos P, Boon N, Heylen K (2011) Denitrification in Gram-positive bacteria: an underexplored trait. Biochem Soc Trans 39:254–258

    Article  PubMed  CAS  Google Scholar 

  • Villemur R, Lanthier M, Beaudet R, Lépine F (2006) The Desulfitobacterium genus. FEMS Microbiol Rev 30:706–733

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Hoefel D, Saint CP, Monis PT, Jin B (2007) The isolation and microbial community analysis of hydrogen producing bacteria from activated sludge. J Appl Microbiol 103:1415–1423

    Article  PubMed  CAS  Google Scholar 

  • Widdel F (1992) The genus Desulfotomaculum. The prokaryotes 2:1792–1799

    Google Scholar 

  • Williams RT, Crawford RL (1985) Methanogenic bacteria, including an acid-tolerant strain, from peatlands. Appl Environ Microbiol 50:1542–1544

    PubMed  CAS  Google Scholar 

  • Zettler LAA, Gómez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Microbiology: eukaryotic diversity in Spain’s River of Fire. Nature 417:137

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Spanish “Ministerio de Ciencia e Innovación” Grant CTM2009-10521 to J.L. Sanz and Grant CGL2009-11059 to R. Amils. Irene Sánchez-Andrea is a pre-doctoral fellow supported by the same Ministerio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Sánchez-Andrea.

Additional information

Communicated by A. Driessen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Andrea, I., Rojas-Ojeda, P., Amils, R. et al. Screening of anaerobic activities in sediments of an acidic environment: Tinto River. Extremophiles 16, 829–839 (2012). https://doi.org/10.1007/s00792-012-0478-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-012-0478-4

Keywords

Navigation