Skip to main content
Log in

Microbial diversity and activity in hypersaline high Arctic spring channels

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Lost Hammer (LH) spring is a unique hypersaline, subzero, perennial high Arctic spring arising through thick permafrost. In the present study, the microbial and geochemical characteristics of the LH outflow channels, which remain unfrozen at ≥−18°C and are more aerobic/less reducing than the spring source were examined and compared to the previously characterized spring source environment. LH channel sediments contained greater microbial biomass (~100-fold) and greater microbial diversity reflected by the 16S rRNA clone libraries. Phylotypes related to methanogenesis, methanotrophy, sulfur reduction and oxidation were detected in the bacterial clone libraries while the archaeal community was dominated by phylotypes most closely related to THE ammonia-oxidizing Thaumarchaeota. The cumulative percent recovery of 14C-acetate mineralization in channel sediment microcosms exceeded ~30% and ~10% at 5 and −5°C, respectively, but sharply decreased at −10°C (≤1%). Most bacterial isolates (Marinobacter, Planococcus, and Nesterenkonia spp.) were psychrotrophic, halotolerant, and capable of growth at −5°C. Overall, the hypersaline, subzero LH spring channel has higher microbial diversity and activity than the source, and supports a variety of niches reflecting the more dynamic and heterogeneous channel environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770

    PubMed  CAS  Google Scholar 

  • Anesio AM, Mindl B, Laybourn-Parry J, Hodson AJ, Sattler B (2007) Viral dynamics in cryoconite holes on a high Arctic glacier (Svalbard). J Geophys Res Biogeosci 112:G04S31

    Article  Google Scholar 

  • Anthony KMW, Vas DA, Brosius L, Chapin FS, Zimov SA, Zhuang QL (2010) Estimating methane emissions from northern lakes using ice-bubble surveys. Limnol Oceanogr Methods 8:592–609

    Article  CAS  Google Scholar 

  • Arakawa S, Sato T, Sato R, Zhang J, Gamo T, Tsunogai U, Hirota A, Yoshida Y, Usami R, Inagaki F, Kato C (2006) Molecular phylogenetic and chemical analyses of the microbial mats in deep-sea cold seep sediments at the northeastern Japan Sea. Extremophiles 10:311–319

    Article  PubMed  CAS  Google Scholar 

  • Ayala-del-Rio HL, Chain PS, Grzymski JJ, Ponder MA, Ivanova N, Bergholz PW, Di Bartolo G, Hauser L, Land M, Bakermans C, Rodrigues D, Klappenbach J, Zarka D, Larimer F, Richardson P, Murray A, Thomashow M, Tiedje JM (2010) The genome sequence of Psychrobacter arcticus 273–4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl Environ Microbiol 76:2304–2312

    Article  PubMed  CAS  Google Scholar 

  • Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555

    Article  PubMed  CAS  Google Scholar 

  • Bakermans C (2008) Limits for microbial life at subzero temperatures. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 17–28

    Chapter  Google Scholar 

  • Bakermans C (2012) Psychrophiles: life in the cold. In: Anitori R (ed) Extremophiles: microbiology and biotechnology. Caister Academic Press, Norfolk, UK, pp 53–76

  • Bakermans C, Skidmore ML (2011) Microbial metabolism in ice and brine at −5 degrees C. Environ Microbiol 13:2269–2278

    PubMed  Google Scholar 

  • Barrett JE, Virginia RA, Wall DH, Cary SC, Adams BJ, Hacker AL (2006) Co-variation in soil biodiversity and biogeochemistry in northern and southern Victoria Land, Antarctica. Antarct Sci 18:535–548

    Article  Google Scholar 

  • Boden R, Kelly DP, Murrell JC, Schafer H (2010) Oxidation of dimethylsulfide to tetrathionate by Methylophaga thiooxidans sp. nov.: a new link in the sulfur cycle. Environ Microbiol 12:2688–2699

    PubMed  CAS  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  PubMed  CAS  Google Scholar 

  • Bottos EM, Vincent WF, Greer CW, Whyte LG (2008) Prokaryotic diversity of arctic ice shelf microbial mats. Environ Microbiol 10:950–966

    Article  PubMed  CAS  Google Scholar 

  • Bowman JP, Nichols DS (2005) Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia. Int J Syst Evol Microbiol 55:1471–1486

    Article  PubMed  CAS  Google Scholar 

  • Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA (1997) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078

    PubMed  CAS  Google Scholar 

  • Brinkmeyer R, Knittel K, Jurgens J, Weyland H, Amann R, Helmke E (2003) Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microbiol 69:6610–6619

    Article  PubMed  CAS  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    Article  PubMed  CAS  Google Scholar 

  • Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  • Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443

    Article  PubMed  CAS  Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    Article  PubMed  Google Scholar 

  • de la Torre JR, Walker CB, Ingalls AE, Könneke M, Stahl DA (2008) Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 10:810–818

    Article  PubMed  Google Scholar 

  • de Zwart JMM, Nelisse PN, Kuenen JG (1996) Isolation and characterization of Methylophaga sulfidovorans sp. nov.: an obligately methylotrophic, aerobic, dimethylsufide oxidizing bacterium from a microbial mat. FEMS Microbiol Ecol 20:261–270

    Article  Google Scholar 

  • Dieser M, Greenwood M, Foreman CM (2010) Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arct Antarct Alp Res 42:396–405

    Article  Google Scholar 

  • Formisano V, Atreya S, Encrenaz T, Ignatiev N, Giuranna M (2004) Detection of methane in the atmosphere of Mars. Science 306:1758–1761

    Article  PubMed  CAS  Google Scholar 

  • Franzmann PD, Burton HR, McMeekin TA (1987) Halomonas subglaciescola, a new species of halotolerant bacteria isolated from Antarctica. Int J Syst Bacteriol 37:27–34

    Article  Google Scholar 

  • Furukawa K, Hoshino T, Tsuneda S, Inamori Y (2006) Comprehensive analysis of cell wall-permeabilizing conditions for highly sensitive fluorescence in situ hybridization. Microbes Environ 21:227–234

    Article  Google Scholar 

  • Gillan D, Danis B (2007) The archaebacterial communities in Antarctic bathypelagic sediments. Deep Sea Res II 54:1682–1690

    Article  Google Scholar 

  • Good IL (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264

    Google Scholar 

  • Guan TW, Xiao J, Zhao K, Luo XX, Zhang XP, Zhang LL (2009) Halomonas xinjiangensis sp. nov., a halotolerant bacterium isolated from a salt lake. Int J Syst Evol Microbiol 60:349–352

    Article  PubMed  Google Scholar 

  • Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, Daims H, Wagner M (2008) A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci USA 105:2134–2139

    Article  PubMed  CAS  Google Scholar 

  • Hedges JI, Stern JH (1984) Carbon and nitrogen determinations of carbonate-containing solids. Limnol Oceanogr 29:657–663

    Article  CAS  Google Scholar 

  • Hoover CM, Weishampel P, Kolka R (2008) Measurement of methane fluxes from terrestrial landscapes using static, non-steady state enclosures. In: Hoover CM (ed) Field measurements for forest carbon monitoring. Springer Science, NY, pp 163–170

    Chapter  Google Scholar 

  • Inagaki F, Okada H, Tsapin AI, Nealson KH (2005) Microbial survival: the paleome: a sedimentary genetic record of past microbial communities. Astrobiology 5:141–153

    Article  PubMed  CAS  Google Scholar 

  • Isaksen ISA, Gauss M, Myhre G, Anthony KMW, Ruppel C (2011) Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions. Glob Biogeochem Cycles GB2002. doi:10.1029/2010GB003845

  • Jørgensen BB, Boetius A (2007) Feast and famine—microbial life in the deep-sea bed. Nat Rev Microbiol 5:770–781

    Article  PubMed  Google Scholar 

  • Junge K, Gosink JJ, Hoppe HG, Staley JT (1998) Arthrobacter, Brachybacterium and Planococcus isolates identified from antarctic sea ice brine. Description of Planococcus mcmeekinii, sp. nov. Syst Appl Microbiol 21:306–314

    Article  PubMed  CAS  Google Scholar 

  • Kerr RA (2011) Planetary science. Enceladus now looks wet, so it may be ALIVE! Science 332:1259

    Article  PubMed  CAS  Google Scholar 

  • Knittel K, Lösekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71:467–479

    Article  PubMed  CAS  Google Scholar 

  • Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  PubMed  Google Scholar 

  • Krebs C (1989) Species diversity measures ecological methodology. Harper and Row, New York, pp 328–368

    Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. Wiley, New York

    Google Scholar 

  • Lefevre F, Forget F (2009) Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460:720–723

    Article  PubMed  CAS  Google Scholar 

  • Lim CH, Jackson ML (1982) Dissolution for total elemental analysis. In: Page AL (ed) Methods of soil analysis. Chemical and microbiological properties. Soil Science Society of America, Madison, pp 1–12

    Google Scholar 

  • Losekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R (2007) Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microbiol 73:3348–3362

    Article  PubMed  Google Scholar 

  • Malin MC, Edgett KS, Posiolova LV, McColley SM, Dobrea EZ (2006) Present-day impact cratering rate and contemporary gully activity on Mars. Science 314:1573–1577

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophlic microorganisms. Res Microbiol 162:346–361

    Article  PubMed  Google Scholar 

  • Matveeva TV, Mazurenko LL, Soloviev VA, Klerkx J, Kaulio VV, Prasolov EM (2003) Gas hydrate accumulation in the subsurface sediments of Lake Baikal (Eastern Siberia). Geo Mar Lett 23:289–299

    Article  CAS  Google Scholar 

  • Maynard DG, Kalra YP (1993) Nitrate and exchangeable ammonium nitrogen. In: Carter MR (ed) Soil sampling and methods of analysis. Canadian Society of Soil Science,Lewis Publishers, London, pp 25–32

    Google Scholar 

  • McEwen AS, Ojha L, Dundas CM, Mattson SS, Byrne S, Wray JJ, Cull SC, Murchie SL, Thomas N, Gulick VC (2011) Seasonal flows on warm Martian slopes. Science 333:740–743

    Article  PubMed  CAS  Google Scholar 

  • Medina-Sanchez JM, Felip M, Casamayor EO (2005) Catalyzed reported deposition-fluorescence in situ hybridization protocol to evaluate phagotrophy in mixotrophic protists. Appl Environ Microbiol 71:7321–7326

    Article  PubMed  CAS  Google Scholar 

  • Mueller DR, Vincent WF, Bonilla S, Laurion I (2005) Extremotrophs, extremophiles and broadband pigmentation strategies in a high arctic ice shelf ecosystem. FEMS Microbiol Ecol 53:73–87

    Article  PubMed  CAS  Google Scholar 

  • Mumma MJ, Villanueva GL, Novak RE, Hewagama T, Bonev BP, Disanti MA, Mandell AM, Smith MD (2009) Strong release of methane on Mars in northern summer 2003. Science 323:1041–1045

    Article  PubMed  CAS  Google Scholar 

  • Niederberger TD, Perreault NN, Lawrence JR, Nadeau JL, Mielke RE, Greer CW, Andersen DT, Whyte LG (2009) Novel sulfur-oxidizing streamers thriving in perennial cold saline springs of the Canadian high Arctic. Environ Microbiol 11:616–629

    Article  PubMed  CAS  Google Scholar 

  • Niederberger TD, Perreault NN, Tille S, Lollar BS, Lacrampe-Couloume G, Andersen D, Greer CW, Pollard W, Whyte L (2010) Microbial characterization of a subzero, hypersaline methane seep in the Canadian High Arctic. ISME J 4:1–14

    Article  Google Scholar 

  • Onstott TC, McGown DJ, Bakermans C, Ruskeeniemi T, Ahonen L, Telling J, Soffientino B, Pfiffner SM, Sherwood-Lollar B, Frape S, Stotler R, Johnson EJ, Vishnivetskaya TA, Rothmel R, Pratt LM (2009) Microbial communities in subpermafrost saline fracture water at the Lupin Au mine, Nunavut, Canada. Microb Ecol 58:786–807

    Article  PubMed  CAS  Google Scholar 

  • Pernthaler J, Glöckner FO, Schönhuber W, Amann R (2001) Fluorescence in situ hybridization. Academic Press Ltd, London

    Google Scholar 

  • Perreault NN, Andersen DT, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the prokaryotic diversity in cold saline perennial springs of the Canadian high arctic. Appl Environ Microbiol 73:1532–1543

    Article  PubMed  CAS  Google Scholar 

  • Perreault NN, Greer CW, Andersen DT, Tille S, Lacrampe-Couloume G, Lollar BS, Whyte LG (2008) Heterotrophic and autotrophic microbial populations in cold perennial springs of the high arctic. Appl Environ Microbiol 74:6898–6907

    Article  PubMed  CAS  Google Scholar 

  • Pollard W, Haltigin T, Whyte L, Niederberger T, Andersen D, Omelon C, Nadeau J, Ecclestone M, Lebeuf M (2009) Overview of analogue science activities at the McGill Arctic Research Station, Axel Heiberg Island, Canadian high arctic. Planet Space Sci 57:646–659

    Article  CAS  Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Google Scholar 

  • Postberg F, Schmidt J, Hillier J, Kempf S, Srama R (2011) A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474:620–622

    Article  PubMed  CAS  Google Scholar 

  • Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA 101:4631–4636

    Article  PubMed  CAS  Google Scholar 

  • Priscu JC, Christner BC (2004) Earth’s icy biosphere. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington, DC, pp 130–145

    Google Scholar 

  • Roy R, Greer CW (2000) Hexadecane mineralization and denitrification in two diesel fuel-contaminated soils. FEMS Microbiol Ecol 32:17–23

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed  CAS  Google Scholar 

  • Schouten S, Hopmans EC, Baas M, Boumann H, Standfest S, Könneke M, Stahl DA, Sinninghe Damste JS (2008) Intact membrane lipids of “Candidatus Nitrosopumilus maritimus,” a cultivated representative of the cosmopolitan mesophilic group I Crenarchaeota. Appl Environ Microbiol 74:2433–2440

    Article  PubMed  CAS  Google Scholar 

  • Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E, Streit W, Stahl DA, Wagner M, Schleper C (2010) Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol 18:331–340

    Article  PubMed  CAS  Google Scholar 

  • Steven B, Leveille R, Pollard WH, Whyte LG (2006) Microbial ecology and biodiversity in permafrost. Extremophiles 10:259–267

    Article  PubMed  Google Scholar 

  • Steven B, Briggs G, McKay CP, Pollard WH, Greer CW, Whyte LG (2007a) Characterization of the microbial diversity in a permafrost sample from the Canadian High Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol 59:513–523

    Article  PubMed  CAS  Google Scholar 

  • Steven B, Niederberger TD, Bottos EM, Dyen MR, Whyte LG (2007b) Development of a sensitive radiorespiration method for detecting microbial activity at subzero temperatures. J Microbiol Methods 71:275–280

    Article  PubMed  CAS  Google Scholar 

  • Steven B, Pollard WH, Greer CW, Whyte LG (2008) Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian High Arctic. Environ Microbiol 10:3388–3403

    Article  PubMed  CAS  Google Scholar 

  • Steven B, Niederberger T, Whyte L (2009) Bacterial and archaeal diversity in permafrost. In: Margesin R (ed) Permafrost soils (soil biology). Springer, Berlin, pp 59–72

    Chapter  Google Scholar 

  • Stoecker K, Bendinger B, Schoning B, Nielsen PH, Nielsen JL, Baranyi C, Toenshoff ER, Daims H, Wagner M (2006) Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc Natl Acad Sci USA 103:2363–2367

    Article  PubMed  CAS  Google Scholar 

  • Valentine DL (2002) Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie Van Leeuwenhoek 81:271–282

    Article  PubMed  CAS  Google Scholar 

  • Valentine DL, Reeburgh WS (2000) New perspectives on anaerobic methane oxidation. Environ Microbiol 2:477–484

    Article  PubMed  CAS  Google Scholar 

  • Wagner D, Kobabe S et al (2003) Microbial controls on methane fluxes from a polygonal tundra of the Lena Delta, Siberia. Permafr Periglac Process 14:173–185

    Google Scholar 

  • Wallner G, Amann R, Beisker W (1993) Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14:136–143

    Article  PubMed  CAS  Google Scholar 

  • Wells LE, Deming JW (2006) Modelled and measured dynamics of viruses in Arctic winter sea-ice brines. Environ Microbiol 8:1115–1121

    Article  PubMed  Google Scholar 

  • Whitehead TR, Cotta MA (1999) Phylogenetic diversity of methanogenic archaea in swine waste storage pits. FEMS Microbiol Lett 179:223–226

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Yamamoto S, Alcauskas JB, Crozier TE (1976) Solubility of methane in distilled water and seawater. J Chem Eng Data 21:78–80

    Article  CAS  Google Scholar 

  • Zhang DC, Li HR, Xin YH, Chi ZM, Zhou PJ, Yu Y (2008) Marinobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from the Arctic. Int J Syst Evol Microbiol 58:1463–1466

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by NSERC CREATE Astrobiology Training Program, CSA Canadian Analogue Research Network Grant Program, Polar Continent Shelf Program, NSERC Discovery Grant Program, and Department of Natural Resource Sciences, McGill. We thank Dr. M. Wagner for the information regarding Thaumarchaeota, Dr. A. Chao for the questions regarding the indices, Dr. J. Whalen and H. Lalande for the help of C/N/nitrite/nitrate/ammonia analyses, and thanks to the members of the Whyte and Greer Labs for helpful discussions and to Dr. H. Vrionis for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyle G. Whyte.

Additional information

Communicated by A. Oren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 128 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lay, CY., Mykytczuk, N.C.S., Niederberger, T.D. et al. Microbial diversity and activity in hypersaline high Arctic spring channels. Extremophiles 16, 177–191 (2012). https://doi.org/10.1007/s00792-011-0417-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-011-0417-9

Keywords

Navigation