Skip to main content
Log in

Bacterial diversity in five Icelandic geothermal waters: temperature and sinter growth rate effects

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The microbial ecology associated with siliceous sinters was studied in five geochemically diverse Icelandic geothermal systems. Bacterial 16S rRNA clone libraries were constructed from water-saturated precipitates from each site resulting in a total of 342 bacterial clone sequences and 43 species level phylotypes. In near-neutral, saline (2.6–4.7% salinity) geothermal waters where sinter growth varied between 10 and ~300 kg year−1 m−2, 16S rRNA gene analyses revealed very low (no OTUs could be detected) to medium (9 OTUs) microbial activity. The most dominant phylotypes found in these waters belong to marine genera of the Proteobacteria. In contrast, in alkaline (pH = 9–10), meteoric geothermal waters with temperature = 66–96°C and <1–20 kg year−1m−2 sinter growth, extensive biofilms (a total of 34 OTUs) were observed within the waters and these were dominated by members of the class Aquificae (mostly related to Thermocrinis), Deinococci (Thermus species) as well as Proteobacteria. The observed phylogenetic diversity (i.e., number and composition of detected OTUs) is argued to be related to the physico-chemical regime prevalent in the studied geothermal waters; alkaliphilic thermophilic microbial communities with phylotypes related to heterotrophic and autotrophic microorganisms developed in alkaline high temperature waters, whereas halophilic mesophilic communities dominated coastal geothermal waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Bjornsdottir SH, Petursdottir SK, Hreggvidsson GO, Skirnisdottir S, Hjorleifsdottir S, Arnfinnsson J, Kristjansson JK (2009) Thermus islandicus sp nov., a mixotrophic sulfur-oxidizing bacterium isolated from the Torfajokull geothermal area. Int. J Syst Evol Microbiol 59:2962–2966

    Article  CAS  Google Scholar 

  • Blank CE, Cady SL, Pace NR (2002) Microbial composition of near-boiling silica depositing thermal springs throughout Yellowstone National Park. Appl Environ Microbiol 68:5123–5135

    Article  PubMed  CAS  Google Scholar 

  • Boomer SM, Noll KL, Geesey GG, Dutton BE (2009) Formation of multilayered photosynthetic biofilms in an alkaline thermal spring in Yellowstone National Park, Wyoming. Appl Environ Microbiol 75:2464–2475

    Article  PubMed  CAS  Google Scholar 

  • Brock TD, Freeze H (1969) Thermus aquaticus gen n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98:289–297

    Article  PubMed  CAS  Google Scholar 

  • Cady SL, Farmer JD (1996) Fossilization processes in siliceous thermal springs trends in preservation along thermal gradient. In: Evolution of hydrothermal ecosystem on Earth (and Mars?). Ciba Foundation, Wiley, pp 150–172

    Google Scholar 

  • Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  • Childs AM, Mountain BW, O’Toole R, Stott MB (2008) Relating microbial community and physicochemical parameters of a Hot Spring: Champagne Pool, Wai-o-tapu, New Zealand. Geomicrobiol J 25:441–453

    Article  CAS  Google Scholar 

  • Chung AP, Rainey FA, Valente M, Nobre MF, da Costa MS (2000) Thermus igniterrae sp nov and Thermus antranikianii sp. nov., two new species from Iceland. Int J Syst Evol Microbiol 50:209–217

    Article  PubMed  CAS  Google Scholar 

  • Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443

    Article  PubMed  CAS  Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tiedje JM (2007) The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35:D169–D172

    Article  PubMed  CAS  Google Scholar 

  • Derekova A, Mandeva R, Kambourova M (2008) Phylogenetic diversity of thermophilic carbohydrate degrading bacilli from Bulgarian hot springs. World J Microbiol Biotechnol 24:1697–1702

    Article  CAS  Google Scholar 

  • Eder W, Huber R (2002) New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp nov. Extremophiles 6:309–318

    Article  PubMed  Google Scholar 

  • Farmer JD, DesMarais DJ (1999) Exploring for a record of ancient Martian life. J Geophys Res 104:26977–26995

    Article  PubMed  Google Scholar 

  • Flores GE, Liu Y, Ferrera I, Beveridge TJ, Reysenbach A-L (2008) Sulfurihydrogenibium kristjanssoni sp nov., a hydrogen- and sulfur-oxidizing thermophile isolated from a terrestrial Icelandic hot spring. Int J Syst Evol Microbiol 58:1153–1158

    Article  PubMed  CAS  Google Scholar 

  • Fouke BW, Bonheyo GT, Sanzenbacher B, Frias-Lopez J (2003) Partitioning of bacterial communities between travertine depositional facies at Mammoth Hot Springs, Yellowstone National Park, USA. Can J Earth Sci 40:1531–1548

    Article  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hjorleifsdottir S, Skirnisdottir S, Hreggvidsson GO, Holst O, Kristjansson JK (2001) Species composition of cultivated and noncultivated bacteria from short filaments in an Icelandic hot spring at 88°C. Microbiol Ecol 42:117–125

    CAS  Google Scholar 

  • Hreggvidsson GO, Skirnisdottir S, Smit B, Hjorleifsdottir S, Marteinsson VT, Solveig Petursdottir S, Kristjansson JK (2006) Polyphasic analysis of Thermus isolates from geothermal areas in Iceland. Extremophiles 10:563–575

    Article  PubMed  CAS  Google Scholar 

  • Huber R, Eder W, Heldwein S, Wanner G, Huber H, Rachel R, Stetter KO (1998) Thermocrinis ruber gen nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone national Park. Appl Environ Microbiol 64:3576–3583

    PubMed  CAS  Google Scholar 

  • Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  PubMed  CAS  Google Scholar 

  • Hudson JA, Morgan HW, Daniel RM (1987) Thermus filiformis sp nov., a filamentous caldoactive bacterium. Int J Syst Bacteriol 37:431–436

    Article  Google Scholar 

  • Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacteria diversity in a Yellowstone hot spring. J Bacteriol 180:366–376

    PubMed  CAS  Google Scholar 

  • Hurst CJ, Crawford RL, Knudsen GR, McInernery MJ, Stetzenbach LD (2002) Manual of environmental microbiology. ASM Press, Washington DC

    Google Scholar 

  • Inagaki F, Hayashi S, Doi K, Motomura Y, Izawa E, Ogata S (1997) Microbial participation in the formation of siliceous deposits from geothermal water and analysis of the extremely thermophilic bacterial community. FEMS Microbiol Ecol 24:41–48

    Article  CAS  Google Scholar 

  • Konhauser KO, Phoenix VR, Bottrell SH, Adams DG, Head IM (2001) Microbial-silica interactions in Icelandic hot springs sinter: possible analogues for some Precambrian siliceous stromatolites. Sedimentology 48:415–433

    Article  CAS  Google Scholar 

  • Kristjansson JK, Alfredsson GA (1983) Distribution of Thermus spp in Icelandic hot springs and a thermal gradient. Appl Environ Microbiol 45:1785–1789

    PubMed  CAS  Google Scholar 

  • Kristjansson JK, Hjorleifsdottir S, Merteinsson VT, Alfredsson GA (1994) Thermus scotoductus, sp. nov., a pigment-producing thermophilic bacterium from hot tap water in Iceland and including Thermus sp. X-1. Syst Appl Microbiol 17:44–50

    Google Scholar 

  • Madigan M, Martinko J (2005) Brock biology of microorganisms, 11th edn. Prentice Hall, pp 1088

  • Meyer-Dombard DR, Shock EL, Amend JP (2005) Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park USA. Geobiology 3:211–227

    Article  Google Scholar 

  • Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov., and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius, and G. thermodenitrificans. Int J Syst Evol Microbiol 50:1331–1337

  • Petursdottir SK, Hreggvidsson GO, Da-Costa MS, Kristjansson JK (2000) Genetic diversity analysis of Rhodothermus reflects geographical origin of the isolates. Extremophiles 4:267–274

    Article  PubMed  CAS  Google Scholar 

  • Petursdottir SK, Bjornsdottir SH, Hreggvidsson GO, Hjorleifsdottir S, Kristjansson JK (2009) Analysis of the unique geothermal microbial ecosystem of the Blue Lagoon. FEMS Microbiol Ecol 70:425–432

    Article  PubMed  CAS  Google Scholar 

  • Purcell D, Sompong U, Yim LC, Barraclough TG, Peerapornpisal Y, Pointing SB (2007) The effects of temperature, pH and sulphide on the community structure of hyperthemophilic streamers in hot springs of northern Thailand. FEMS Microbiol Ecol 60:456–466

    Article  PubMed  CAS  Google Scholar 

  • Reysenbach A-L, Wickham GS, Pace NR (1994) Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl Environ Microbiol 60:2113–2119

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed  CAS  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Champaign

    Google Scholar 

  • Skirnisdottir S, Hreggvidsson GO, Hjörleifsdottir S, Marteinsson VT, Petursdottir SK, Holst O, Kristjansson JK (2000) Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66:2835–2841

    Article  PubMed  CAS  Google Scholar 

  • Squyres SW, Arvidson RE, Ruff S, Gellert R, Morris RV, Ming DW, Crumpler L, Farmer JD, Des Marais DJ, Yen A, McLennan SM, Calvin W, Bell JF III, Clark BC, Wang A, McCoy TJ, Schmidt ME, de Souza Jr PA (2008) Detection of silica-rich deposits on Mars. Science 320:1063–1067

    Article  PubMed  CAS  Google Scholar 

  • Takacs CD, Ehringer M, Favre R, Cermola M, Eggertson G, Palsdottir A, Reysenbach A-L (2001) Phylogenetic characterisation of the blue filamentous bacterial community from and Icelandic geothermal spring. FEMS Microbiol Ecol 35:123–128

    Article  PubMed  CAS  Google Scholar 

  • Takacs-Vesbach CD, Mitchell K, Jackson-Weaver O, Reysenbach A-L (2008) Volcanic calderas delineate biogeographic provinces amongst Yellowstone thermophiles. Environ Microbiol 10:1681–1688

    Article  PubMed  CAS  Google Scholar 

  • Tobler DJ, Stefansson A, Benning LG (2008) In situ grown silica sinters in Icelandic geothermal areas. Geobiology 6:481–502

    Article  PubMed  CAS  Google Scholar 

  • Toporski JKW, Steele A, Westall F, Thomas-Keprta KL, McKay DS (2002) The simulated silicification of bacteria—new clues to the modes and timing of bacterial preservation and implications for the search for extraterrestrial microfossils. Astrobiology 2:1–26

    Article  PubMed  CAS  Google Scholar 

  • Ward DM, Santegoeds CM, Nold SC, Ramsing NB, Ferris MJ, Bateson MM (1997) Biodiversity within hot springs microbial communities: molecular monitoring of enrichment cultures. Antoine Leeuwenhoek 71:143–150

    Article  CAS  Google Scholar 

  • Yamamoto H, Hiraishi A, Kato K, Chiura HX, Maki Y, Shimizu A (1998) Phylogenetic evidence for the existence of novel thermophilic bacteria in hot spring sulphur-turf microbial mats in Japan. Appl Environ Microbiol 64:1680–1687

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Matthew Stott and Bruce Mountain from Wairakei Research Centre, GNS Science, Taupo, New Zealand for laboratory access and technical assistance with the construction of 16S rDNA clone libraries. DJT would like to acknowledge Xavier Bailley (INRA Clermont-Ferrand, Saint Genès Champanelle, France) for initial help with sequence analysis. Financial support via a PhD fellowship (DJT) from the Earth and Biosphere Institute (University of Leeds, UK), and a UK Royal Society research grant (LGB) to support work at GNS are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique J. Tobler.

Additional information

Communicated by M. da Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tobler, D.J., Benning, L.G. Bacterial diversity in five Icelandic geothermal waters: temperature and sinter growth rate effects. Extremophiles 15, 473–485 (2011). https://doi.org/10.1007/s00792-011-0378-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-011-0378-z

Keywords

Navigation