Skip to main content
Log in

Comparative study on dihydrofolate reductases from Shewanella species living in deep-sea and ambient atmospheric-pressure environments

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

To examine whether dihydrofolate reductase (DHFR) from deep-sea bacteria has undergone molecular evolution to adapt to high-pressure environments, we cloned eight DHFRs from Shewanella species living in deep-sea and ambient atmospheric-pressure environments, and subsequently purified six proteins to compare their structures, stabilities, and functions. The DHFRs showed 74–90% identity in primary structure to DHFR from S. violacea, but only 55% identity to DHFR from Escherichia coli (ecDHFR). Far-ultraviolet circular dichroism and fluorescence spectra suggested that the secondary and tertiary structures of these DHFRs were similar. In addition, no significant differences were found in structural stability as monitored by urea-induced unfolding and the kinetic parameters, K m and k cat; although the DHFRs from Shewanella species were less stable and more active (2- to 4-fold increases in k cat/K m) than ecDHFR. Interestingly, the pressure effects on enzyme activity revealed that DHFRs from ambient-atmospheric species are not necessarily incompatible with high pressure, and DHFRs from deep-sea species are not necessarily tolerant of high pressure. These results suggest that the DHFR molecule itself has not evolved to adapt to high-pressure environments, but rather, those Shewanella species with enzymes capable of retaining functional activity under high pressure migrated into the deep-sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DHF:

Dihydrofolate

DHFR:

Dihydrofolate reductase

ecDHFR:

DHFR from Escherichia coli

sb21DHFR:

DHFR from Shewanella benthica strain DB21MT-2

sb43992DHFR:

DHFR from S. benthica strain ATCC43992

sb6705DHFR:

DHFR from S. benthica strain DB6705

sfDHFR:

DHFR from S. frigidimarina strain ACAM591

sgDHFR:

DHFR from S. gelidimarina strain ACAM456

soDHFR:

DHFR from S. oneidensis strain MR-1

spDHFR:

DHFR from S. putrefaciens strain IAM12079

svDHFR:

DHFR from S. violacea strain DSS12

THF:

Tetrahydrofolate

References

  • Bowman JP, McCammon SA, Nichols DS, Skerratt JH, Rea SM, Nichols PD, McMeekin TA (1997) Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047

    Article  PubMed  CAS  Google Scholar 

  • Chilukuri LN, Bartlett DH (1997) Isolation and characterization of the gene encoding single-stranded-DNA-binding protein (SSB) from four marine Shewanella strains that differ in their temperature and pressure optima for growth. Microbiology 143:1163–1174

    Article  PubMed  CAS  Google Scholar 

  • Chilukuri LN, Bartlett DH, Fortes PAG (2002) Comparison of high pressure-induced dissociation of single-stranded DNA-binding protein (SSB) from high pressure-sensitive and high pressure-adapted marine Shewanella species. Extremophiles 6:377–383

    Article  PubMed  CAS  Google Scholar 

  • Dawson RMC, Elliot DC, Elliot WH, Jones KM (1969) Data for biochemical research. Oxford University Press, Oxford

    Google Scholar 

  • DeLong EF, Franks DG, Yayanos AA (1997) Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63:2105–2108

    PubMed  CAS  Google Scholar 

  • Deming JW, Hada H, Colwell RR, Luehrsen KR, Fox GE (1984) The ribonucleotide sequence of 5s rRNA from two strains of deep-sea barophilic bacteria. J Gen Microbiol 130:1911–1920

    PubMed  CAS  Google Scholar 

  • Fierke CA, Johnson KA, Benkovic SJ (1987) Construction and evaluation of the kinetic scheme associated with dihydrofolate reductase from Escherichia coli. Biochemistry 26:4085–4092

    Article  PubMed  CAS  Google Scholar 

  • Gekko K, Kunori Y, Takeuchi H, Ichihara S, Kodama M, Iwakura M (1994) Point mutations at glycine-121 of Escherichia coli dihydrofolate reductase: important roles of a flexible loop in the stability and function. J Biochem 116:703–710

    Google Scholar 

  • Hay S, Evans RM, Levy C, Loveridge EJ, Wang X, Leys D, Allemann RK, Scrutton NS (2009) Are the catalytic properties of enzymes from piezophilic organisms pressure adapted? Chembiochem 10:2348–2353

    Article  PubMed  CAS  Google Scholar 

  • Kato C, Nogi Y (2001) Correlation between phylogenetic structure and function: examples from deep-sea Shewanella. FEMS Microbiol Ecol 35:223–230

    Article  PubMed  CAS  Google Scholar 

  • Kato C, Sato T, Horikoshi K (1995) Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodivers Conserv 4:1–9

    Article  Google Scholar 

  • Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11, 000 meters. Appl Environ Microbiol 64:1510–1513

    PubMed  CAS  Google Scholar 

  • Kim HS, Damo SM, Lee SY, Wemmer D, Klinman JP (2005) Structure and hydride transfer mechanism of a moderate thermophilic dihydrofolate reductase from Bacillus stearothermophilus and comparison to its mesophilic and hyperthermophilic homologues. Biochemistry 44:11428–11439

    Article  PubMed  CAS  Google Scholar 

  • Kitahara R, Sareth S, Yamada H, Ohmae E, Gekko K, Akasaka K (2000) High pressure NMR reveals active-site hinge motion of folate-bound Escherichia coli dihydrofolate reductase. Biochemistry 39:12789–12795

    Article  PubMed  CAS  Google Scholar 

  • Kuwajima K, Garvey EP, Finn BE, Matthews CR, Sugai S (1991) Transient intermediates in the folding of dihydrofolate reductase as detected by far-ultraviolet circular dichroism spectroscopy. Biochemistry 30:7693–7703

    Article  PubMed  CAS  Google Scholar 

  • Loveridge EJ, Rodriguez RJ, Swanwick RS, Allemann RK (2009) Effect of dimerization on the stability and catalytic activity of dihydrofolate reductase from the hyperthermophile Thermotoga maritime. Biochemistry 48:5922–5933

    Article  PubMed  CAS  Google Scholar 

  • MacDonell MT, Colwell RR (1985) Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol 6:171–182

    CAS  Google Scholar 

  • Murakami C, Ohmae E, Tate S, Gekko K, Nakasone K, Kato C (2010) Cloning and characterization of dihydrofolate reductases from deep-sea bacteria. J Biochem 147:591–595

    Article  PubMed  CAS  Google Scholar 

  • Nogi Y, Kato C, Horikoshi K (1998) Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp nov., a new balophilic bacterial species. Arch Microbiol 170:331–338

    Article  PubMed  CAS  Google Scholar 

  • Nogi Y, Kato C, Horikoshi K (2002) Psychromonas kaikoae sp nov., a novel from the deepest piezophilic bacterium cold-seep sediments in the Japan Trench. Int J Syst Evol Microbiol 52:1527–1532

    Article  PubMed  CAS  Google Scholar 

  • Ohmae E, Iriyama K, Ichihara S, Gekko K (1996) Effects of point mutations at the flexible loop glycine-67 of Escherichia coli dihydrofolate reductase on its stability and function. J Biochem 119:946–953

    Google Scholar 

  • Ohmae E, Sasaki Y, Gekko K (2001) Effects of five-tryptophan mutations on structure and function of Escherichia coli dihydrofolate reductase. J Biochem 130:439–447

    PubMed  CAS  Google Scholar 

  • Ohmae E, Kubota K, Nakasone K, Kato C, Gekko K (2004) Pressure-dependent activity of dihydrofolate reductase from a deep-sea bacterium Shewanella violacea strain DSS12. Chem Lett 33:798–799

    Article  CAS  Google Scholar 

  • Ohmae E, Fukumizu Y, Iwakura M, Gekko K (2005) Effects of mutation at methionine-42 of Escherichia coli dihydrofolate reductase on stability and function: implication of hydrophobic interactions. J Biochem 137:643–652

    Article  PubMed  CAS  Google Scholar 

  • Ohmae E, Tatsuta M, Abe F, Kato C, Tanaka N, Kunugi S, Gekko K (2008) Effects of pressure on enzyme function of Escherichia coli dihydrofolate reductase. Biochim Biophys Acta 1784:1115–1121

    PubMed  CAS  Google Scholar 

  • Owen RJ, Legors RM, Lapage SP (1978) Base composition, size and sequence similarities of genoma deoxyribonucleic acids from clinical isolates of Pseudomonas putrefaciens. J Gen Microbiol 104:127–138

    PubMed  CAS  Google Scholar 

  • Pace CN (1985) Determination and analysis of urea and guanidine hydrochloride denaturation curves. In: Hirs CHW, Timasheff SN (eds) Methods in enzymology vol 131. Academic Press, New York, pp 267–280

    Google Scholar 

  • Penner MH, Frieden C (1985) Substrate-induced hysteresis in the activity of Escherichia coli dihydrofolate reductase. J Biol Chem 260:5366–5369

    PubMed  CAS  Google Scholar 

  • Redecke L, Brehm MA, Bredehorst R (2007) Cloning and characterization of dihydrofolate reductase from a facultative alkaliphilic and halotolerant bacillus strain. Extremophiles 11:75–83

    Article  PubMed  CAS  Google Scholar 

  • Stone SR, Morrison JF (1982) Kinetic mechanism of the reaction catalyzed by dihydrofolate reductase from Escherichia coli. Biochemistry 21:3757–3765

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Touchette NA, Perry KM, Matthews CR (1986) Folding of dihydrofolate reductase from Escherichia coli. Biochemistry 25:5445–5452

    Article  PubMed  CAS  Google Scholar 

  • Venkateswaran K, Moser DP, Dollhopf ME, Lies DP, Saffarini DA, MacGregor BJ, Ringelberg DB, White DC, Nishijima M, Sano H, Burghardt J, Stackebrandt E, Nealson KH (1999) Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp nov. Int J Syst Bacteriol 49:705–724

    Article  PubMed  CAS  Google Scholar 

  • Vidugiris GJA, Royer CA (1998) Determination of the volume changes for pressure-induced transitions of apomyoglobin between the native, molten globule, and unfolded states. Biophys J 75:463–470

    Article  PubMed  CAS  Google Scholar 

  • Williams JW, Morrison JF, Duggleby RG (1979) Methotrexate, a high-affinity pseudosubstrate of dihydrofolate reductase. Biochemistry 18:2567–2573

    Article  PubMed  CAS  Google Scholar 

  • Wright DB, Banks DD, Lohman JR, Hilsenbeck JL, Gloss LM (2002) The effect of salts on the activity and stability of Escherichia coli and Haloferax volcanii dihydrofolate reductases. J Mol Biol 323:327–344

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Feller G, Gerday C, Glansdorff N (2003) Moritella cold-active dihydrofolate reductase: are there natural limits to optimization of catalytic efficiency at low temperature? J Bacteriol 185:5519–5526

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (no. 16657031 for K.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Ohmae.

Additional information

Communicated by F. Robb.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murakami, C., Ohmae, E., Tate, Si. et al. Comparative study on dihydrofolate reductases from Shewanella species living in deep-sea and ambient atmospheric-pressure environments. Extremophiles 15, 165–175 (2011). https://doi.org/10.1007/s00792-010-0345-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-010-0345-0

Keywords

Navigation