, Volume 15, Issue 1, pp 59–65 | Cite as

Temperature and pH controls on glycerol dibiphytanyl glycerol tetraether lipid composition in the hyperthermophilic crenarchaeon Acidilobus sulfurireducens

  • Eric S. BoydEmail author
  • Ann Pearson
  • Yundan Pi
  • Wen-Jun Li
  • Yi Ge Zhang
  • Liu He
  • Chuanlun L. Zhang
  • Gill G. Geesey
Original Paper


Cyclization in glycerol dibiphytanyl glycerol tetraethers (GDGTs) results in internal cyclopentane moieties which are believed to confer thermal stability to crenarchaeal membranes. While the average number of rings per GDGT lipid (ring index) is positively correlated with temperature in many temperate environments, poor correlations are often observed in geothermal environments, suggesting that additional parameters may influence GDGT core lipid composition in these systems. However, the physical and chemical parameters likely to influence GDGT cyclization which are often difficult to decouple in geothermal systems, making it challenging to assess their influence on lipid composition. In the present study, the influence of temperature (range 65–81°C), pH (range 3.0–5.0), and ionic strength (range 10.1–55.7 mM) on GDGT core lipid composition was examined in the hyperthermoacidophile Acidilobus sulfurireducens, a crenarchaeon originally isolated from a geothermal spring in Yellowstone National Park, Wyoming. When cultivated under defined laboratory conditions, the composition of individual and total GDGTs varied significantly with temperature and to a lesser extent with the pH of the growth medium. Ionic strength over the range of values tested did not influence GDGT composition. The GDGT core lipid ring index was positively correlated with temperature and negatively correlated with pH, suggesting that A. sulfurireducens responds to increasing temperature and acidity by increasing the number of cyclopentyl rings in GDGT core membrane lipids.


Glycerol dibiphytanyl glycerol tetraether GDGT Yellowstone pH Temperature Crenarchaea 



This research was supported by National Science Foundation grant MCB-0132022 to GGG and National Science Foundation grant MCB-0348180 to CLZ with subcontract award to AP. CLZ was also supported by the National Natural Science Foundation of China (Award # 40972211) and the State Key Laboratory of Marine Geology at Tongji University. ESB acknowledges support from the Inland Northwest Research Alliance and the NASA Astrobiology Institute postdoctoral fellowship program.


  1. Amend JP, Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev 25:175–243CrossRefPubMedGoogle Scholar
  2. Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171CrossRefPubMedGoogle Scholar
  3. Boyd ES, Jackson RA, Encarnacion G, Zahn JA, Beard T, Leavitt WD, Pi Y, Zhang CL, Pearson A, Geesey GG (2007) Isolation, characterization, and ecology of sulfur-respiring Crenarchaea inhabiting acid-sulfate-chloride geothermal springs in Yellowstone National Park. Appl Environ Microbiol 73:6669–6677CrossRefPubMedGoogle Scholar
  4. De Rosa M, Gambacorta A (1988) The lipids of archaebacteria. Prog Lipid Res 27:153–175CrossRefPubMedGoogle Scholar
  5. De Rosa M, Esposito E, Gambacorta A, Nicolaus B, Bu’Lock JD (1980) Effects of temperature on the lipid composition of Caldariella acidophila. Phytochemistry 19:827–831CrossRefGoogle Scholar
  6. De Rosa M, Gambacorta A, Gliozzi A (1986) Structure, biosynthesis, and physicochemical properties of archaebacterial lipids. Microbiol Rev 50:70–80PubMedGoogle Scholar
  7. Gabriel JL, Chong PLG (2000) Molecular modeling of archaebacterial bipolar tetraether lipid membranes. Chem Phys Lipids 105:193–200CrossRefPubMedGoogle Scholar
  8. Gliozzi A, Paoli G, de Rosa M, Gambacorta A (1983) Effect of isoprenoid cyclization on the transition temperature of lipids in thermophilic archaebacteria. Biochim Biophys Acta 735:234–242CrossRefGoogle Scholar
  9. Golyshina OV, Timmis KN (2005) Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ Microbiol 7:1277–1288CrossRefPubMedGoogle Scholar
  10. Inskeep WP, McDermott TR (2005) Geomicrobiology of acid-sulfate-chloride springs in Yellowstone National Park. In: Inskeep WP, McDermott TR (eds) Geothermal biology and geochemistry in Yellowstone National Park. Montana State University, Bozeman, pp 143–162Google Scholar
  11. Inskeep WP, Rusch DB, Jay Z, Herrgard MJ, Kozubal MA, Richardson TH, Macur RE, Hamamura N, Jennings RD, Fouke BW, Reysenbach A-L, Roberto F, Young M, Schwartz A, Boyd ES, Badger J, Mathur EJ, Ortmann AC, Bateson M, Geesey GG, Frazier M (2010) Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS One 5:e9773CrossRefPubMedGoogle Scholar
  12. Macalady JL, Vestling MM, Baumler D, Boekelheide N, Kasper CW, Banfield JF (2004) Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid. Extremophiles 8:411–419CrossRefPubMedGoogle Scholar
  13. Nordstrom DK, Ball JW, McCleskey RB (2005) Ground water to surface water: chemistry of thermal outflows in Yellowstone National Park. In: Inskeep WP, McDermott TR (eds) Geothermal biology and geochemistry in Yellowstone National Park. Montana State University, Bozeman, pp 143–162Google Scholar
  14. Pearson A, Huang Z, Ingalls AE, Romanek CS, Wiegel J, Freeman KH, Smittenberg RH, Zhang CL (2004) Nonmarine crenarchaeol in Nevada hot springs. Appl Environ Microbiol 70:5229–5237CrossRefPubMedGoogle Scholar
  15. Pearson A, Pi Y, Zhao W, Li W, Li Y, Inskeep W, Perevalova A, Romanek C, Li S, Zhang CL (2008) Factors controlling the distribution of archaeal tetraethers in terrestrial hot springs. Appl Environ Microbiol 74:3523–3532CrossRefPubMedGoogle Scholar
  16. Pitcher A, Hopmans EC, Schouten S, Sinninghe Damsté JS (2009) Separation of core and intact polar archaeal tetraether lipids using silica columns: insights into living and fossil biomass contributions. Org Geochem 40:12–19CrossRefGoogle Scholar
  17. Powers LA, Werne JP, Johnson TC, Hopmans EC, Sinninghe Damsté JS (2004) Crenarchaeotal lipids in lake sediments: a new paleotemperature proxy for continental paleoclimate reconstruction? Geology 32:613–616CrossRefGoogle Scholar
  18. Schouten S, Hopmans EC, Forster A, van Breugal Y, Kuypers MMM, Sinninghe Damsté JS (2002) Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett 204:265–274CrossRefGoogle Scholar
  19. Schouten S, Wakeham SG, Hopmans EC, Sinninghe Damsté JS (2003) Biogeochemical evidence that thermophilic archaea mediate the anaerobic oxidation of methane. Appl Environ Microbiol 69:1680–1686CrossRefPubMedGoogle Scholar
  20. Schouten S, van der Meer MTJ, Hopmans EC, Rijpstra WIC, Reysenbach A-L, Ward DM, Sinninghe Damsté JS (2007) Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in hot springs of Yellowstone National Park. Appl Environ Microbiol 73:6181–6191CrossRefPubMedGoogle Scholar
  21. Shimada H, Nemoto N, Shida Y, Oshima T, Yamagishi A (2008) Effects of pH and temperature on the composition of polar lipids in Thermoplasma acidophilum HO-62. J Bacteriol 190:5404–5411CrossRefPubMedGoogle Scholar
  22. Shock EL, Holland M, Meyer-Dombard DR, Amend JP (2005) Geochemical sources of energy for microbial metabolism in hydrothermal ecosystems: Obsidian Pool, Yellowstone National Park. In: Inskeep WP, McDermott TR (eds) Geothermal biology and geochemistry in Yellowstone National Park. Montana State University, Bozeman, pp 143–162Google Scholar
  23. Sinninghe Damsté JS, Schouten S, Hopmans EC, van Duin ACT, Geenevasen JAJ (2002) Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. J Lipid Res 43:1641–1651CrossRefGoogle Scholar
  24. Uda I, Sugai A, Itoh YH, Itoh T (2001) Variation in molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature. Lipids 36:103–105CrossRefPubMedGoogle Scholar
  25. van de Vossenberg JLCM, Driessen AJM, Konings WN (1998a) The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles 2:163–170CrossRefPubMedGoogle Scholar
  26. van de Vossenberg JLCM, Driessen AJM, Zillig W, Konings WN (1998b) Bioenergetics and cytoplasmic membrane stability of the extremely acidophilic, thermophilic archaeon Picrophilus oshimae. Extremophiles 2:67–74CrossRefPubMedGoogle Scholar
  27. van de Vossenberg JLCM, Driessen AJM, da Costa MS, Konings WN (1999) Homeostasis of the membrane proton permeability in Bacillus subtilis grown at different temperatures. Biochim Biophys Acta 1419:97–104CrossRefPubMedGoogle Scholar
  28. Yamauchi K, Doi K, Yoshida Y, Kinoshita M (1993) Archaebacterial lipids: highly proton-impermeable membranes from 1,2-diphytanyl-sn-glycero-3-phosphocholine. Biochim Biophys Acta 1146:178–182CrossRefPubMedGoogle Scholar
  29. Zhang CL, Pearson A, Li Y-L, Mills G, Wiegel J (2006) Thermophilic temperature optimum for Crenarchaeol synthesis and its implication for Archaeal evolution. Appl Environ Microbiol 72:4419–4422CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Eric S. Boyd
    • 1
    Email author
  • Ann Pearson
    • 2
  • Yundan Pi
    • 2
  • Wen-Jun Li
    • 3
  • Yi Ge Zhang
    • 4
  • Liu He
    • 5
  • Chuanlun L. Zhang
    • 5
    • 6
  • Gill G. Geesey
    • 1
  1. 1.Department of MicrobiologyMontana State UniversityBozemanUSA
  2. 2.Department of Earth and Planetary SciencesHarvard UniversityCambridgeUSA
  3. 3.Yunnan Institute of MicrobiologyYunnan UniversityKunmingChina
  4. 4.Department of Geology and GeophysicsYale UniversityNew HavenUSA
  5. 5.State Key Laboratory of Marine GeologyTongji UniversityShanghaiChina
  6. 6.Department of Marine SciencesUniversity of GeorgiaAthensUSA

Personalised recommendations