Extremophiles

, Volume 14, Issue 2, pp 145–159 | Cite as

Biodiversity of air-borne microorganisms at Halley station, Antarctica

  • David A. Pearce
  • K. A. Hughes
  • T. Lachlan-Cope
  • S. A. Harangozo
  • A. E. Jones
Original Paper

Abstract

A study of air-borne microbial biodiversity over an isolated scientific research station on an ice-shelf in continental Antarctica was undertaken to establish the potential source of microbial colonists. The study aimed to assess: (1) whether microorganisms were likely to have a local (research station) or distant (marine or terrestrial) origin, (2) the effect of changes in sea ice extent on microbial biodiversity and (3) the potential human impact on the environment. Air samples were taken above Halley Research Station during the austral summer and austral winter over a 2-week period. Overall, a low microbial biodiversity was detected, which included many sequence replicates. No significant patterns were detected in the aerial biodiversity between the austral summer and the austral winter. In common with other environmental studies, particularly in the polar regions, many of the sequences obtained were from as yet uncultivated organisms. Very few marine sequences were detected irrespective of the distance to open water, and around one-third of sequences detected were similar to those identified in human studies, though both of these might reflect prevailing wind conditions. The detected aerial microorganisms were markedly different from those obtained in earlier studies over the Antarctic Peninsula in the maritime Antarctic.

Keywords

Aerial Air-borne Antarctic Biodiversity Colonisation Bacteria 16S rRNA Non-indigenous 

References

  1. Adams BJ, Bardgett RD, Ayres E, Wall DH, Aislabie J, Bamforth S, Bargagli R, Cary C, Cavacini P, Connell L, Convey P, Fell JW, Frati F, Hogg ID, Newsham KK, O’Donnell A, Russell N, Seppelt RD, Stevens MI (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018CrossRefGoogle Scholar
  2. Ahern HE, Walsh KA, Hill TCJ, Moffett BF (2006) Ice-nucleation negative fluorescent pseudomonads isolated from Hebridean cloud and rain water produce biosurfuctants. Biogeosciences 3:1561–1586Google Scholar
  3. Aislabie JM, Chour K-L, Saul DJ, Miyauchi S, Ayton J, Paetzold RF, Balks MR (2006) Dominant bacteria in soils of Marble Point and Wright Valley Victoria Land Antarctica. Soil Biol Biochem 38:3041–3056CrossRefGoogle Scholar
  4. Allen TD, Lawson PA, Collins MD, Falsen E, Tanner RS (2006) Cloacibacterium normanense gen. nov., sp. nov., a novel bacterium in the family Flavobacteriaceae isolated from municipal wastewater. Int J Syst Evol Microbiol 56:1311–1316CrossRefPubMedGoogle Scholar
  5. Amato P, Parazols M, Sancelme M, Laj P, Mailhot G, Delort A-M (2007) An important oceanic source of microorganisms for cloud water at the Puy de Dôme: (France). Atmos Environ 41:8253–8263CrossRefGoogle Scholar
  6. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589PubMedGoogle Scholar
  7. Balkwill DL, Reeves RH, Drake GR, Reeves JY, Crocker FH, King MB, Boone DR (1997) Phylogenetic characterization of bacteria in the subsurface microbial culture collection. FEMS Microbiol Rev 20:201–216CrossRefPubMedGoogle Scholar
  8. Bauer R, Bekker JP, van Wyk N, du Toit C, Dicks LM, Kossmann J (2009) Exopolysaccharide production by lactose-hydrolyzing bacteria isolated from traditionally fermented milk. Int J Food Microbiol 131:260–264CrossRefPubMedGoogle Scholar
  9. Benninghoff WS, Benninghoff AS (1978) Air-borne particles and electric fields near the ground in Antarctica. Ant J US 13:163–167Google Scholar
  10. Borde X, Guieysse B, Delgado O, Munoz R, Hatti-Kaul R, Nugier-Chauvin C, Patin H, Mattiasson B (2003) Synergistic relationships in algal-bacterial microcosms for the treatment of aromatic pollutants. Bioresour Technol 86:293–300CrossRefPubMedGoogle Scholar
  11. Bridge PD, Newsham KK, Denton GJ (2008) Snow mould caused by a Pythium sp.: a potential vascular plant pathogen in the maritime Antarctic. Plant Path 57:1066–1072CrossRefGoogle Scholar
  12. Busse H-J, Denner EBM, Buczolits S, Salkinoja-Salonen M, Bennasar A, Kämpfer P (2003) Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 53:1253–1260CrossRefPubMedGoogle Scholar
  13. Cameron RE, Morelli FA, Honour RC (1973) Aerobiological monitoring of Dry Valley drilling sites. Ant J US 8:211–214Google Scholar
  14. Campbell BJ, Cottrell MT, Jeanthon C, Prieur D, Cary SC (2001) Dominance and distribution of distinct epsilon proteobacteria in the episymbiotic community of Alvinella pompejana a deep-sea hydrothermal vent annelid. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AF357182]+-newId. Accessed 01 Sep 2009
  15. Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat 11:265–270Google Scholar
  16. Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479–485CrossRefGoogle Scholar
  17. Convey P (2001) Antarctic ecosystems. In: Encyclopedia of biodiversity, vol 1, pp 171–184Google Scholar
  18. Convey P, Frenot Y, Gremmen N, Bergstrom D (2006) Biological invasions. In: Bergstrom DM, Convey P, Huiskes AHL (eds) Trends in Antarctic terrestrial and limnetic ecosystems: Antarctica as a global indicator. Springer, Dordrecht, pp 193–220CrossRefGoogle Scholar
  19. Czarnecki B, Bialasiewicz D (1987) Fungi as a component of the aerosphere of H. Arctowski Polar Station and its vicinity (King George Island, South Shetland Islands). Polish Polar Res 8:153–158Google Scholar
  20. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072CrossRefPubMedGoogle Scholar
  21. Dong X, Hong Q, Li S (2007) Phenol-degrading bacterium Acinetobacter sp. PND-5. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:EF494200]+-newId. Accessed 21 Apr 2009
  22. Ekelöf E (1908) Bakteriologische studien während der Schwedischen Sudpolar-Expedition 1901–1903. In: Nordenskjöld O (ed) Wissenschaftliche Ergebnisse der Schwedischen Süpolar-Expedition 1901–1903. Generalstabs Lithogr. Inst, StockholmGoogle Scholar
  23. Flagan SF, Leadbetter JR (2006) Utilization of capsaicin and vanillylamine as growth substrates by Capsicum (hot pepper)-associated bacteria. Environ Microbiol 8:560–565CrossRefPubMedGoogle Scholar
  24. Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M, Bergstrom DM (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72CrossRefPubMedGoogle Scholar
  25. Frenot Y, Convey P, Lebouvier M, Chown SL, Whinam J, Selkirk PM, Skotnicki M, Bergstrom DM (2008) Antarctic and subantarctic biological invasions: sources, extents, impacts and implications. In: Rogan-Finnemore (ed) Proceedings of non-native species in the Antarctic. Gateway Antarctica, Christchurch, pp 53–96Google Scholar
  26. Gai Y (2006) Pseudomonas sp. Nj-55 http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AM409368]+-newId. Accessed Sep 2009
  27. Gazert H (1912) Untersuchungen über Meeresbakterien und ihren Einfluss auf den Stoffwechsel im Meere. Deutsche Südpolar-Expedition 1901–1903, vol 7, pp 1–296Google Scholar
  28. Gihring T, Moser DP, Onstott TC (2005) The distribution of microbial taxa in the subsurface water of the Kalahari Shield, South Africa. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:DQ256357]+-newId. Accessed 21 Apr 2009
  29. Good IJ (1953) The population frequencies of species and the estimation of the population parameters. Biometrica 40:237–264Google Scholar
  30. Grice EA, Kong HH, Renaud G, Young AC, NISC Comparative Sequencing Program, Bouffard GG, Blakesley RW, Wolfsberg TG, Turner ML, Segre JA (2008) A diversity profile of the human skin microbiota. Genome Res 18:1043–1050CrossRefPubMedGoogle Scholar
  31. Hamada T (2003) Sphingobium yanoikuyae. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AB109749]+-newId. Accessed 01 Sep 2009
  32. Hatch MT, Dimmick RL (1966) Physiological response of air-borne bacteria to shifts in relative humidity. Bacteriol Rev 30:597–603PubMedGoogle Scholar
  33. He JZ, Zheng Y, Chen CR, He YQ, Zhang LM (2008) Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches. J Soils Sediments 8:349–358CrossRefGoogle Scholar
  34. Heylen K, Vanparys B, Wittebolle L, Verstraete W, Boon N, De Vos P (2006) Cultivation-dependent diversity study on denitrification using defined growth media developed with an evolutionary algorithm. Appl Environ Microbiol 72:2637–2643CrossRefPubMedGoogle Scholar
  35. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon; a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319CrossRefPubMedGoogle Scholar
  36. Hughes KA (2003) Aerial dispersal and survival of sewage-derived faecal coliforms in Antarctica. Atmos Environ 37:3147–3155CrossRefGoogle Scholar
  37. Hughes KA (2006) Accidental transfer into Antarctica of alien species with soil on construction vehicles. Aliens 23:8–10Google Scholar
  38. Hughes KA, McCartney HA, Lachlan-Cope TA, Pearce DA (2004) A preliminary study of air-borne biodiversity over peninsular Antarctica. Cell Mol Biol 50:537–542PubMedGoogle Scholar
  39. Hughes KA, Convey P, Maslen NR, Smith RIL (2009) Accidental transfer of non-native soil organisms into Antarctica on construction vehicles. doi:10.1007/s10530-009-9508-2
  40. Huong NL, Itoh K, Suyama K (2007) Diversity of 2, 4-dichlorophenoxyacetic acid (2, 4-D) and 2, 4, 5-Trichlorophenoxyacetic acid (2, 4, 5-T)-degrading bacteria in Vietnamese soils. Microbes Environ 22:243–256CrossRefGoogle Scholar
  41. Hyman RW, Fukushima M, Diamond L, Kumm J, Giudice LC, Davis RW (2005) Microbes on the human vaginal epithelium. Proc Natl Acad Sci USA 102:7952–7957CrossRefPubMedGoogle Scholar
  42. Jones AE, Wolff EW, Salmon RA, Bauguitte SJ-B, Roscoe HK, Anderson PS, Ames D, Clemitshaw KC, Fleming ZL, Bloss WJ, Heard DE, Lee JD, Read KA, Hamer P, Shallcross DE, Jackson AV, Walker SL, Lewis AC, Mills GP, Plane JMC, Saiz-Lopez A, Sturges WT, Worton DR (2008a) Chemistry of the antarctic boundary layer and the interface with snow: an overview of the CHABLIS campaign. Atmos Chem Phys 8:3789–3803Google Scholar
  43. Jones RT, McCormick KF, Martin AP (2008b) Bacterial communities of Bartonella-positive fleas: diversity and community assembly patterns. Appl Environ Microbiol 74:1667–1670CrossRefPubMedGoogle Scholar
  44. Kerry K, Riddle M, Clarke J (1999) Diseases of Antarctic wildlife. A report for the Scientific Committee on Antarctic Research (SCAR) and the Council of Managers of National Antarctic Programs (COMNAP), 104 ppGoogle Scholar
  45. Khan ST, Hiraishi A (2001) Isolation and characterization of a new poly (3-hydroxybutyrate)-degrading, denitrifying bacterium from activated sludge. FEMS Microbiol Lett 205:253–257CrossRefGoogle Scholar
  46. Kim J-D, Lee C-G (2006) Two alga-lytic bacteria associated with management of cyanobacterium Anabaena flos-aquae. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:DQ911549]+-newId. Accessed 01 Sep 2009
  47. Kim MK, Lee JW, Lee KY, Yang DC (2005) Microbial conversion of major ginsenoside rb(1) to pharmaceutically active minor ginsenoside rd. J Microbiol 43:456–462PubMedGoogle Scholar
  48. Kinkel LL (1997) Microbial population dynamics on leaves. Ann Rev Phytopath 35:327–347CrossRefGoogle Scholar
  49. Kwon S-W (2003) Phylogenetic analysis of Pseudomonas spp isolated from upland and paddy soils in Korea. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AY303316]+-newId. Accessed 01 Sep 2009
  50. Lacy GH, Cameron RE, Hanson RB, Morelli FA (1970) Microbial analysis of snow and air from the Antarctic interior. Ant J US 5:88–89Google Scholar
  51. Lawley B, Ripley S, Bridge P, Convey P (2004) Molecular analysis of geographic patterns in eukaryotic diversity of Antarctic soils. Appl Environ Microbiol 70:5963–5972CrossRefPubMedGoogle Scholar
  52. Lee S (2008) Odor degrading bacteria from sewage treatment plant of Maesan-lee (Korea). http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:FJ477061]+-newId. Accessed 01 Sep 2009
  53. Lee S-M, Chao A (1994) Estimating population size via sample coverage for closed capture-recapture models. Biometrics 50:88–97CrossRefPubMedGoogle Scholar
  54. Lee JE, Chown SL (2009) Breaching the dispersal barrier to invasion: quantification and management. Ecol Appl 19:1944–1959CrossRefPubMedGoogle Scholar
  55. Li LB, Liu M, Yang K, Han JG, Zhu BC, Peng ZH (2007) Population diversity of rhizosphere bacteria from Bashania fangiana. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:EU169179]+-newId. Accessed 21 Apr 2009
  56. Liang B, Li SP (2008) Isolation and characterization of a phenanthrene-degradation strain from a polluted farmland. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:FJ493173]+-newId. Accessed 01 Sep 2009
  57. Lin X, Yi D, Xu G (2008) Molecular identification of microorganisms isolated from polar area. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:FJ386496]+-newId. Accessed 21 Apr 2009
  58. Lösekann T, Robador A, Niemann H, Knittel K, Boetius A, Dubilier N (2008) Endosymbioses between bacteria and deep-sea siboglinid tubeworms from an Arctic Cold Seep (Haakon Mosby Mud Volcano, Barents Sea). Environ Microbiol 10:3237–3254CrossRefPubMedGoogle Scholar
  59. Marafie SMRH, Ashkanani L (1991) Air-borne bacteria in Kuwait (1986–1988). Grana 30:472–476CrossRefGoogle Scholar
  60. Martin R, Heilig HGHJ, Zoetendal EG, Jimenez E, Fernandez L, Smidt H, Rodriguez JM (2007) Cultivation-independent assessment of the bacterial diversity of breast milk among healthy women. Res Microbiol 158:31–37CrossRefPubMedGoogle Scholar
  61. Mechichi T, Fuchs G (2001) New Acidovorax species capable of anaerobic degradation of 3 4-dihydroxybenzoate. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AF458096]+-newId. Accessed 01 Sep 2009
  62. Mislowack BJ, Onstott TC, Lin LH, Rose G, Ralston C, Sherwood-Lollar B, Pfiffner SM, Kieft T, McCuddy S (2005) In situ cultivation of deep subsurface microorganisms in a mafic sill: implications for SLiME’s. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:DQ069188]+-newId. Accessed 21 Apr 2009
  63. Mohn WW, Wilson AE, Bicho P, Moore ER (1999) Physiological and phylogenetic diversity of bacteria growing on resin acids. Syst Appl Microbiol 22:68–78PubMedGoogle Scholar
  64. Mueller JG, Devereux R, Santavy DL, Lantz SE, Willis SG, Pritchard PH (1997) Phylogenetic and physiological comparisons of PAH-degrading bacteria from geographically diverse soils. Antonie Van Leeuwenhoek 71:329–343CrossRefPubMedGoogle Scholar
  65. Nakabachi A, Ishikawa H, Kudo T (2003) Extraordinary proliferation of microorganisms in aposymbiotic pea aphids Acyrthosiphon pisum. J Invertebr Pathol 82:152–161CrossRefPubMedGoogle Scholar
  66. New Zealand (2007) A five-year work plan for the CEP: report of the Intersessional Contact Group. Antarctic Treaty Consultative Meeting XXX, Committee for Environmental Protection X, Working Paper 15, New Delhi, 30 Apr–11 May 2007Google Scholar
  67. Nohynek LJ, Nurmiaho-Lassila EL, Suhonen EL, Busse J, Mohammadi M, Hantula J, Rainey F, Salkinoja-Salonen MS (1996) Description of chlorophenol-degrading Pseudomonas sp. strains KF1T KF3 and NKF1 as a new species of the genus Sphingomonas Sphingomonas subarctica sp. Nov. Int J Syst Bacteriol 46:1042–1055PubMedCrossRefGoogle Scholar
  68. Osman S, La Duc MT, Dekas A, Newcombe D, Venkateswaran K (2008) Microbial burden and diversity of commercial airline cabin air during short and long durations of travel. ISME J 2:482–497CrossRefPubMedGoogle Scholar
  69. Paster BJ, Dewhirst FE (2003) Bacterial diversity of the human oral cavity. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AY349412]+-newId. Accessed 21 Apr 2009
  70. Paster BJ, Falkler WA Jr, Enwonwu CO, Idigbe EO, Savage KO, Levanos VA, Tamer MA, Ericson RL, Lau CN, Dewhirst FE (2002) Prevalent bacterial species and novel phylotypes in advanced noma lesions. J Clin Microbiol 40:2187–2191CrossRefPubMedGoogle Scholar
  71. Paul LR, Chapman BK, Chanway CP (2004) Nitrogen fixing bacteria within Suillus tomentosus (Kauff) Singer Snell and Dick/Pinus contorta var. latifolia (Dougl) Engelm Tuberculate Ectomycorrhizas. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AY605697]+-newId. Accessed 01 Sep 2009
  72. Paulin MM, Novinscak A, St-Arnaud M, Prive J-P, Owen J, Filion M (2006) Molecular characterization and transcriptional activity of antibiotic-producing rhizobacteria with biocontrol properties. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:DQ788996]+-newId. Accessed 01 Sep 2009
  73. Pearce DA (2000) A rapid, sensitive method for monitoring bacterioplankton community dynamics, applied to Antarctic freshwater lakes. Polar Biol 23:352–356CrossRefGoogle Scholar
  74. Pearce DA, van der Gast CJ, Lawley B, Ellis-Evans JC (2003) Bacterioplankton community diversity in a maritime Antarctic lake, determined by culture-dependent and culture independent techniques. FEMS Microbiol Ecol 45:59–70CrossRefPubMedGoogle Scholar
  75. Pearce DA, Bridge PD, Hughes K, Sattler B, Psenner R, Russell NJ (2009) Microorganisms in the atmosphere over Antarctica. FEMS Microbiol Ecol 69:143–157CrossRefPubMedGoogle Scholar
  76. Pirie JHH (1912) Notes on antarctic bacteriology. Report on the scientific research of the voyage of S.Y. “Scotia” during the years 1902, 1903 and 1904, vol 3, pp 137–148Google Scholar
  77. Rahman PKSM (2009) Pseudomonas collierea partial 16S rRNA gene, strain PR212T. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AM421016]+-newId. Accessed 01 Sep 2009
  78. Rankin AM, Wolff EW (2000) Ammonium and potassium in snow around an emperor penguin colony. Ant Sci 12:154–159CrossRefGoogle Scholar
  79. Rankin AM, Wolff EW (2003) A year-long record of size-segregated aerosol composition at Halley, Antarctica. J Geophys Res 108:4775CrossRefGoogle Scholar
  80. Rankin AM, Wolff EW, Martin S (2002) Frost flowers: Implications for tropospheric chemistry and ice core interpretation. J Geophys Res 107:4683CrossRefGoogle Scholar
  81. Redford AJ, Fierer N (2008) Surveying the phylogenetic diversity of bacteria inhabiting tree leaf surfaces. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:EU448649]+-newId. Accessed 01 Sep 2009
  82. Rudolph ED (1970) Local dissemination of plant propagules in Antarctica. In: Holdgate MW (ed) Antarctic ecology. Academic Press, London, pp 812–817Google Scholar
  83. Russian Federation (2006) Monitoring of pathogenic microbiota in the Antarctic. In: Antarctic treaty consultative meeting XXIX. Committee for Environmental Protection IX, Information Paper 72, Edinburgh, UK, 12–23 Jun 2006Google Scholar
  84. Russian Federation (2009) Microbiological monitoring of the expedition infrastructure facilities in the Antarctic. In: Antarctic treaty consultative meeting XXXII. Committee for Environmental Protection XII, Information Paper 46, Baltimore, USA, 6–17 Apr 2009Google Scholar
  85. Saha P, Chakrabarti T (2004) Imtechium gen. nov., isolated from a warm spring of Assam, India. Proposal of Imtechium assamiensis sp. nov. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AY544767]+-newId. Accessed 21 Apr 2009
  86. Sawyer B, Rao KC, O’Brien P, Elenbogen G, Zenz DR, Lue Hing C (1996) Changes in bacterial aerosols with height above aeration tanks. J Environ Eng 5:368–373Google Scholar
  87. Shawkey MD, Mills KL, Dale C, Hill GE (2005) Microbial diversity of wild bird feathers revealed through culture-based and culture-independent techniques. Microb Ecol 50:40–47CrossRefPubMedGoogle Scholar
  88. Sikorski J, Jahr H, Wackernagel W (2001) The structure of a local population of phytopathogenic Pseudomonas brassicacearum from agricultural soil indicates development under purifying selection pressure. Environ Microbiol 3:176–186CrossRefPubMedGoogle Scholar
  89. Simpson EH (1949) Measurement of diversity. Nature 163:688CrossRefGoogle Scholar
  90. Sjoling S, Cowan DA (2000) Detecting human bacterial contamination in Antarctic soils. Polar Biol 23:644–650CrossRefGoogle Scholar
  91. Tian F, Ding YQ, Yao LT, Zhu H, Du BH (2006) Pseudomonas putida strain G-4-1-2 16S ribosomal RNA gene, partial sequence. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:EF102847]+-newId. Accessed 01 Sep 2009
  92. Tin T, Fleming ZL, Hughes KA, Ainley DG, Convey P, Moreno CA, Pfeiffer S, Scott J, Snape I (2009) Impacts of local human activities on the Antarctic environment. Ant Sci 21:3–33CrossRefGoogle Scholar
  93. Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308:554–557CrossRefPubMedGoogle Scholar
  94. Upton M, Pennington TH, Haston W (1997) Detecting commensals in the area around an Antarctic research station. Ant Sci 9:156–161CrossRefGoogle Scholar
  95. Van Houdt R, De Boever P, Coninx I, Le Calvez C, Dicasillati R, Mahillon J, Mergeay M, Leys N (2008) Evaluation of the air-borne bacterial population in the periodically confined Antarctic base Concordia. Microb Ecol. doi:10.1007/s00248-008-9462-z
  96. Vancanneyt M, Schut F, Snauwaert C, Goris J, Swings J, Gottschal JC (2001) Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment. Int J Syst Evol Microbiol 51:73–79PubMedGoogle Scholar
  97. Vasanthakumar A, Handelsman J, Schloss PD, Raffa KF (2007) Gut microbiota of an invasive wood-boring beetle the emerald ash borer: community composition and structure across different life stages. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:EU148648]+-newId. Accessed 01 Sep 2009
  98. Vasiliadou IA, Siozios S, Papadas IT, Bourtzis K, Pavlou S, Vayenas DV (2006) Kinetics of pure cultures of hydrogen-oxidizing denitrifying bacteria and modeling of the interactions among them in mixed cultures. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:DQ421391]+-newId. Accessed 01 Sep 2009
  99. Wagenbach D, Ducroz E, Mulvaney R, Keck L, Minikin A, Legrand M, Hall JS, Wolff EW (1998) Sea-salt aerosol in coastal Antarctic regions. J Geophys Res 103:10961–10974CrossRefGoogle Scholar
  100. Wang W (2007) Pseudomonas fluorescens strain CICCHLJ Q92 16S ribosomal RNA gene, partial sequence. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:EF528294]+-newId. Accessed 01 Sep 2009
  101. Wenzel M, Schoenig I, Berchtold M, Koenig H (2000) Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AJ299575]+-newId. Accessed 01 Sep 2009
  102. Whang KS (2007) Isolation and phylogenetic characterization of oligotrophic bacteria from Korean ginseng rhizosphere soil. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AB365794]+-newId. Accessed 21 Apr 2009
  103. Whinam J, Chilcott N, Bergstrom DM (2004) Subantarctic hitchhikers: expeditioners as vectors for the introduction of alien organisms. Biol Cons 121:207–219CrossRefGoogle Scholar
  104. Woese CR (1990) A.calcoaceticus 16S ribosomal RNA. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:M34139]+-newId. Accessed 01 Sep 2009
  105. Wolff EW, Cachier H (1998) Concentrations and seasonal cycle of black carbon in aerosol at a coastal Antarctic station. J Geophys Res 103:11033–11042CrossRefGoogle Scholar
  106. Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA (2007) Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol 9:2670–2682CrossRefPubMedGoogle Scholar
  107. Yuhana M (2004) High mountain snow communities: habitats at lower altitude revealed more diversity compared to that of higher altitude. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:AJ867722]+-newId. Accessed 01 Sep 2009
  108. Zeglin LH, Dahm CN, Barrett JE, Gooseff MN, Takacs-Vesbach CD (2008) Bacterial diversity and nutrient concentration across moisture gradients in hot and cold desert streams. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:EU869791]+-newId. Accessed 21 Apr 2009
  109. Zhang D (2007) Isolation and characterization of phototrophic bacteria from East China Sea. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[EMBL:EU252500]+-newId. Accessed 21 Apr 2009

Copyright information

© Springer 2010

Authors and Affiliations

  • David A. Pearce
    • 1
  • K. A. Hughes
    • 1
  • T. Lachlan-Cope
    • 1
  • S. A. Harangozo
    • 1
  • A. E. Jones
    • 1
  1. 1.British Antarctic Survey, Natural Environment Research CouncilCambridgeUK

Personalised recommendations