, Volume 13, Issue 3, pp 411–423 | Cite as

Bacterial diversity in the snow over Tibetan Plateau Glaciers

  • Yongqin Liu
  • Tandong Yao
  • Nianzhi Jiao
  • Shichang Kang
  • Baiqin Xu
  • Yonghui Zeng
  • Sijun Huang
  • Xiaobo Liu
Original Paper


Bacterial diversity and cell abundance in the snow of the four glaciers (Guoqu, Zadang, East Rongbuk and Palong No. 4) located in different climatic zones of the Tibetan Plateau were investigated through culture-independent molecular analysis of 16S rRNA gene clone library and flow cytometry approaches. Cell abundance ranged from 0.68 × 103 to 720 × 103 cells mL−1, with higher values in the northern glaciers than in the southern ones. Bacterial diversity was unexpectedly high in the snow habitats of the world’s highest plateau, with 15 common genera distributed widely among the glaciers. The bacterial diversity in the snow at different glaciers was related to the surrounding environments. The Guoqu Glacier, to the north near the desert zone and with the lowest temperature, preserved more bacteria closely related to a cold environment and soil than the other glaciers. However, in the Palong No. 4 Glacier located in the south warm region around vegetation, most bacteria were phylogenetically related to plant-associated bacteria.


Bacteria Abundance Diversity Snow Glacier The Tibetan Plateau 



This work was supported by the Ministry of Science and Technology of the People’s Republic of China (Grant No. 2005CB422004) and the National Natural Science Foundation of China (Grant No. 40671044, 40471022, 40771187). Professor John Hodgkiss is thanked for his help with English.


  1. Abyzov SS, Mitskevich IN, Poglazova MN (1998) Microflora of the deep glacier horizons of central Antarctica. Microbiology 67:66–73Google Scholar
  2. Alfreider A, Pernthaler J, Amann R, Sattler B, Glockner F, Wille A, Psenner R (1996) Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization. Appl Environ Microbiol 62:2138–2144PubMedGoogle Scholar
  3. Amato P, Hennebelle R, Magand O, Sancelme M, Delort AM, Barbante C, Boutron C, Ferrari C (2007) Bacterial characterization of the snow cover at Spitzberg, Svalbard. FEMS Microbiol Ecol 59:255–264PubMedCrossRefGoogle Scholar
  4. Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (1992) The prokaryotes, vol 2, 2nd edn edn. Springer, New YorkGoogle Scholar
  5. Barnett TP, Dumenil L, Schlese U, Roeckner E, Latif M (1989) The effect of Eurasian snow cover on regional and global climate variations. J Atmos Sci 46:661–685CrossRefGoogle Scholar
  6. Brosius J, Palmer ML, Kennedy JP, Noller FH (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805PubMedCrossRefGoogle Scholar
  7. Buck CF, Mayewski PA, Spencer MJ, Whitlow S, Twickler MS, Barrett D (1992) Determination of major ions in snow and ice cores by ion chromatography. J Chromatogr 594:225–228CrossRefGoogle Scholar
  8. Carpenter EJ, Lin S, Capone DG (2000) Bacterial activity in South Pole snow. Appl Environ Microbiol 66:4514–4517PubMedCrossRefGoogle Scholar
  9. Christner BC (2002) Detection, recovery, isolation and characterization of bacteria in glacial ice and lake Vostok accretion ice. PhD thesis, Ohio State University, ColumbusGoogle Scholar
  10. Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479–485CrossRefGoogle Scholar
  11. Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2003) Bacterial recovery from ancient glacial ice. Environ Microbiol 5:433–436PubMedCrossRefGoogle Scholar
  12. Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2005) The ribosomal database project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:294–296CrossRefGoogle Scholar
  13. Duan KQ, Yao TD, Thompson LG (2006) Response of monsoon precipitation in the Himalayas to global warming. J Geophys Res 11:D19110. doi: 10.1029/2006JD007084 CrossRefGoogle Scholar
  14. Garrison DL, Sulivan CW, Ackley SF (1986) Sea ice microbial communities in Antarctica. Bioscience 36:243–250CrossRefGoogle Scholar
  15. Hoham RW, Duval B (2001) Microbial ecology of snow and freshwater ice with emphasis on snow algae. In: Jones HG, Pomeroy JW, Walker DA, RW H (eds) Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge University Press, Cambridge, pp 168–228Google Scholar
  16. Jiao NZ, Yang YH, Hong N, Ma Y, Harada S, Koshikawa H, Watanabe M (2005) Dynamics of autotrophic picoplankton and heterotrophic bacteria in the East China Sea. Cont Shelf Res 25:1265–1279CrossRefGoogle Scholar
  17. Jones HG (1999) The ecology of snow-covered systems: a brief overview of nutrient cycling and life in the cold. Hydrol Process 13:2135–2147CrossRefGoogle Scholar
  18. Kemp PF, Aller JY (2004) Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol Ecol 47:161–177CrossRefPubMedGoogle Scholar
  19. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  20. Liu YQ, Yao TD, Tian LD, Xu BQ, Wu GJ (2006) Glaciochemical records from Naimonia’Nyi ice core in the Himalayas. J Geograph Sci 16:465–471CrossRefGoogle Scholar
  21. Luo TX, Pan YD, Ouyang H, Shi PL, Luo J, Yu ZL, Lu Q (2004) Leaf area index and net primary productivity along subtropical to alpine gradients in the Tibetan Plateau. Glob Ecol Biogeogr 13:345–358CrossRefGoogle Scholar
  22. Maidak BL, Cole JR, Lilburn TG, Parker CT, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RDP-II (ribosomal database project). Nucleic Acids Res 29:173–174PubMedCrossRefGoogle Scholar
  23. Marie D, Partensky F, Jacquet S, Vaulot D (1997) Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl Environ Microbiol 63:186–193PubMedGoogle Scholar
  24. Miteva V (2007) Bacteria in snow and glacier ice. In: Margesin R, Schinner F, MJ C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 31–50Google Scholar
  25. Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70:202–213PubMedCrossRefGoogle Scholar
  26. Painter TH, Duval B, Thomas WH, Mendez M, Heintzelman S, Dozier J (2001) Detection and quantification of snow algae with an airborne imaging spectrometer. Appl Environ Microbiol 67:5267–5272PubMedCrossRefGoogle Scholar
  27. Sattler B, Puxbaum H, Psenner R (2001) Bacterial growth in supercooled cloud droplets. Geophys Res Lett 28:239–242CrossRefGoogle Scholar
  28. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506PubMedCrossRefGoogle Scholar
  29. Segawa T, Miyamoto K, Ushida K, Agata K, Okada N, Kohshima S (2005) Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR. Appl Environ Microbiol 71:123–130PubMedCrossRefGoogle Scholar
  30. Shi Y (2000) Glacier and their environment in China. Science Press, BeijingGoogle Scholar
  31. Stibal M, Sabacka M, Kastovska K (2006) Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb Ecol 52:644–654PubMedCrossRefGoogle Scholar
  32. Takeuchi N (2001) The altitudinal distribution of snow algae on an Alaska glacier (Gulkana Glacier in the Alaska Range). Hydrol Process 15:3447–3459CrossRefGoogle Scholar
  33. Thompson LG, Yao T, Mosley-Thompson E, Davis ME, Henderson KA, Lin PN (2000) A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores. Science 289:1916–1919PubMedCrossRefGoogle Scholar
  34. Tian LD, Yao TD, Li Z, MacClune K, Wu GJ, Xu BQ, Li YF, Lu AX, Shen YP (2006) Recent rapid warming trend revealed from the isotopic record in Muztagata ice core, eastern Pamirs. J Geophy Res 111:D13103. doi: 10.1029/2005JD006249 CrossRefGoogle Scholar
  35. Xiang SR, Yao TD, An LZ, Li Z, Wu GJ, Wang YQ, Xu BQ, Wang JX (2004) Change of bacterial community in the Malan Ice Core and its relation to climate and environment. Chin Sci Bull 49:1869–1875CrossRefGoogle Scholar
  36. Yao TD, Wu GJ, Pu JC, Jiao KQ, Huang CL (2004) Relationship between calcium and atmospheric dust recorded in Guliya ice core. Chin Sci Bull 49:706–710CrossRefGoogle Scholar
  37. Yao TD, Xiang SR, Zhang XJ, Wang NL, Wang YQ (2006) Microorganisms in the Malan ice core and their relation to climatic and environmental changes. Global Biogeochem Cycles 20:GB1004. doi: 1010.1029/2004GB002424 CrossRefGoogle Scholar
  38. Yoshimura Y, Kohshima S, Ohtani S (1997) A community of snow algae on Himalayan glacier: change of algal biomass and community structure with altitude. Arct Alp Res 29:126–137CrossRefGoogle Scholar
  39. Zhang X, Yao T, An LZ, Tian LD (2006) A study on the vertical profile of bacterial DNA structure in the Puruogangri (Tibetan Plateau) ice core using denaturing gradient gel electrophoresis. Ann Glaciol 43:160–166CrossRefGoogle Scholar
  40. Zheng D (1996) The system of physico-geographical regions of the Qinghai-Xizang (Tibet) plateau. Sci China Ser D 39:410–417Google Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Yongqin Liu
    • 1
  • Tandong Yao
    • 1
  • Nianzhi Jiao
    • 2
  • Shichang Kang
    • 1
  • Baiqin Xu
    • 1
  • Yonghui Zeng
    • 2
  • Sijun Huang
    • 2
  • Xiaobo Liu
    • 2
  1. 1.Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS)BeijingChina
  2. 2.State Key Laboratory of Marine Environmental ScienceXiamen UniversityXiamenChina

Personalised recommendations