Skip to main content

Advertisement

Log in

Characterization of a key trifunctional enzyme for aromatic amino acid biosynthesis in Archaeoglobus fulgidus

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

In the aromatic amino acid biosynthesis pathway, chorismate presents a branch point intermediate that is converted to tryptophan, phenylalanine (Phe), and tyrosine (Tyr). In bacteria, three enzymes catalyze the conversion of chorismate to hydroxyphenylpyruvate or pyruvate. The enzymes, chorismate mutase (CM), prephenate dehydratase (PDT), and prephenate dehydrogenase (PDHG) are either present as distinct proteins or fusions combining two activities. Gene locus AF0227 of Archaeoglobus fulgidus is predicted to encode a fusion protein, AroQ, containing all three enzymatic domains. This work describes the first characterization of a trifunctional AroQ. The A. fulgidus aroQ gene was cloned and overexpressed in Escherichia coli. The recombinant protein purified as a homohexamer with specific activities of 10, 0.51, and 50 U/mg for CM, PDT, and PDHG, respectively. Tyr at 0.5 mM concentration inhibited PDHG activity by 50%, while at 1 mM PDT was activated by 70%. Phe at 5 μM inhibited PDT activity by 66% without affecting the activity of PDHG. A fusion of CM, PDT, and PDHG domains is evident in the genome of only one other organism sequenced to date, that of the hyperthermophilic archaeon, Nanoarchaeum equitans. Such fusions of contiguous activities in a biosynthetic pathway may constitute a primitive strategy for the efficient processing of labile metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bonvin J, Aponte RA, Marcantonio M, Singh S, Christendat D, Turnbull JL (2006) Biochemical characterization of prephenate dehydrogenase form the hyperthermophilic bacterium Aquifex aeolicus. Protein Sci 15:1417–1432

    Article  PubMed  CAS  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890

    Article  PubMed  CAS  Google Scholar 

  • Cotton RG, Gibson F (1965) The biosynthesis of phenylalanine and tyrosine; enzymes converting chorismic acid into prephenic acid and their relationships to prephenate dehydratase and prephenate dehydrogenase. Biochim Biophys Acta 100:76–88

    PubMed  CAS  Google Scholar 

  • D’Amico S, Marx J-C, Gerday C, Feller G (2003) Activity–stability relationships in extremophilic enzymes. J Biol Chem 278:7891–7896

    Article  PubMed  CAS  Google Scholar 

  • Davidson BE, Blackburn EH, Dopheide TAA (1972) Chorismate mutase-prephenate dehydratase from Escherichia coli K-12. J Biol Chem 247:4441–4446

    PubMed  CAS  Google Scholar 

  • Dawson RMC, Elliott DC, Elliott WH, Jones KM (1989) Data for biochemical research, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Dosselaere F, Vanderleyden J (2001) A metabolic node in action: Chorimate-utilizing enzymes in microorganisms. Crit Rev Microbiol 27:75–131

    Article  PubMed  CAS  Google Scholar 

  • Euverink GJW, Wolters DJ, Dijkhuizen L (1995) Prephenate dehydratase of the actinomycete Amycolatopsis methanolica: purification and characterization of wild-type and deregulated mutant protein. Biochem J 308:313–320

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP (Phylogeny Inference Package), version 3.5c, distributed by the author. Department of Genetics, University of Washington, Seattle

    Google Scholar 

  • Fischer RS, Bonner CA, Boone DR, Jensen RA (1993) Clues from a halophilic methanogen about aromatic amino acid biosynthesis in archaebacteria. Arch Microbiol 160:440–446

    Article  CAS  Google Scholar 

  • Friedrich CG, Friedrich B, Schlegel HG (1976) Regulation of chorismate mutase-prephenate dehydratase and prephenate dehydrogenase from Alcaligenes eutrophus. J Bacteriol 126:723–732

    PubMed  CAS  Google Scholar 

  • Helmstaedt K, Heinrich G, Merkl R, Braus GH (2004) Chorismate mutase of Thermus thermophilus is a monofunctional AroH class enzyme inhibited by tyrosine. Arch Microbiol 181:195–203

    Article  PubMed  CAS  Google Scholar 

  • Heyde E, Morrison JF (1978) Kinetic studies on the reactions catalyzed by chorismate mutase-prephenate dehydrogenase from Aerobacter aerogenes. Biochemistry 17:1573–1580

    Article  PubMed  CAS  Google Scholar 

  • Kim SK et al (2006) Biochemical and structural characterization of the secreted chorismate mutase (Rv1885c) from Mycobacterium tuberculosis H37Rv: an *AroQ enzyme not regulated by the aromatic amino acids. J Bacteriol 188:8638–8648

    Article  PubMed  CAS  Google Scholar 

  • Kleeb AC, Kast P, Hilvert D (2006) A monofunctional and thermostable prephenate dehydratase from the archaeon Methanocaldococcus jannaschii. Biochemistry 45:14101–14110

    Article  PubMed  CAS  Google Scholar 

  • Koch GLE, Shaw DC, Gibson F (1970) Tyrosine biosynthesis in Aerobacter aerogenes. Purification and properties of chorismate mutase-prephenate dehydrogenase. Biochim Biophys Acta 212:375–386

    PubMed  CAS  Google Scholar 

  • Koch GLE, Shaw DC, Gibson F (1971) The purification and characterization of chorismate mutase-prephenate dehydrogenase from Escherichia coli K12. Biochim Biophys Acta 229:795–804

    PubMed  CAS  Google Scholar 

  • Lim S, Schröder I, Monbouquette HG (2004) A thermostable shikimate 5-dehydrogenase from the archaeon Archaeoglobus fulgidus. FEMS Microbiol Lett 238:101–106

    PubMed  CAS  Google Scholar 

  • MacBeath G, Kast P, Hilvert D (1998) A small, thermostable, and monofunctional chorismate mutase from the archaeon Methanococcus jannaschii. Biochemistry 37:10062–10073

    Article  PubMed  CAS  Google Scholar 

  • Perbal B (1988) A practical guide to molecular cloning, 2nd edn. Wiley, New York

    Google Scholar 

  • Porat I, Waters BW, Teng Q, Whitman WB (2004) Two biosynthetic pathways for aromatic amino acids in the archaeon Methanococcus maripaludis. J Bacteriol 186:4940–4950

    Article  PubMed  CAS  Google Scholar 

  • Riepl RG, Glover GI (1978) Purification of prephenate dehydratase from Bacillus subtilis. Arch Biochem Biophys 191:192–197

    Article  PubMed  CAS  Google Scholar 

  • Sasso S, Ramakrishnan C, Gamper M, Hilvert D, Kast P (2005) Characterization of the secreted chorismate mutase from the pathogen Mycobacterium tuberculosis. FEBS J 272:375–389

    Article  PubMed  CAS  Google Scholar 

  • Schmit JC, Zalkin H (1971) Chorismate mutase-prephenate dehydratase. Phenylalanine-induced dimerization and its relationship to feedback inhibition. J Biol Chem 246:6002–6010

    PubMed  CAS  Google Scholar 

  • Schröder I, Vadas A, Johnson E, Lim S, Monbouquette HG (2004) A novel archaeal alanine dehydrogenase homologous to ornithine cyclodeaminase and mu-crystallin. J Bacteriol 186:7680–7689

    Article  PubMed  Google Scholar 

  • Waters E et al (2003) The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci U S A 100:12984–12988

    Article  PubMed  CAS  Google Scholar 

  • Xia T, Song J, Zhao G, Aldrich H, Jensen RA (1993) The aroQ-encoded monofunctional chorismate mutase (CM-F) protein is a periplasmic enzyme in Erwinia herbicola. J Bacteriol 175:4729–4737

    PubMed  CAS  Google Scholar 

  • Yanai I, Wolf YI, Koonin EV (2002) Evolution of gene fusions: horizontal transfer versus independent events. Genome Biol 3:1–13

    Google Scholar 

  • Zhang S, Pohner G, Kongsaeree P, Wilson DB, Clardy J, Ganem B (1998) Chorismate mutase-prephenate dehydratase from Escherichia coli. Study of catalytic and regulatory domains using genetically engineered proteins. J Biol Chem 273:6248–6253

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Chi-Hee Kim for the construction of plasmid pIS85. This work was supported by the National Science Foundation (BES-9911718) and the US Department of Commerce/NIST (Cooperative Agreement 70NANBOH0064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold G. Monbouquette.

Additional information

Communicated by L. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, S., Springstead, J.R., Yu, M. et al. Characterization of a key trifunctional enzyme for aromatic amino acid biosynthesis in Archaeoglobus fulgidus . Extremophiles 13, 191–198 (2009). https://doi.org/10.1007/s00792-008-0209-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-008-0209-z

Keywords

Navigation