Skip to main content
Log in

Development and use of genetic system to identify genes required for efficient low-temperature growth of Psychrobacter arcticus 273-4

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

We describe the development of genetic tools (electroporation, conjugation, vector for targeted gene replacement) for use in the psychrophile Psychrobacter arcticus 273-4 to test hypotheses about cold adaptation. Successful electroporation only occurred with nonstandard parameters, such as: electrocompetent cells freshly prepared from stationary-phase cultures, high field strengths (25 kV cm−1), long recovery times (16–24 h), and selection with low concentrations of antibiotics. Transformation frequencies were greatly affected by a methylation-dependent restriction barrier homologous to DpnI. The vector pJK100 (which was self-transmissible and contained a Pir-dependent R6K origin of replication) proved effective as a suicide plasmid that could be used to recombine mutations into the P. arcticus 273-4 genome. We used this vector for targeted replacement of dctT, the substrate-binding periplasmic subunit of a TRAP (tripartite ATP-independent periplasmic) transporter (which we have named dctTUF), as it was more highly expressed at cold temperatures. The replacement of dctT (with kan) decreased the rate of growth at low temperatures in mineral medium with glutamate, acetate, butyrate, and fumarate, but not with pyruvate suggesting that DctTUF participates in the transport of glutamate, acetate, butyrate, and fumarate at cold temperatures. This is the first report to demonstrate the creation of site-specific mutants in the genus Psychrobacter, their affect on low-temperature growth, and a substrate range for TAXI proteins of TRAP transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aricha B, Fishov I, Cohen Z, Sikron N, Pesakhov S, Khozin-Goldberg I, Dagan R, Porat N (2004) Differences in membrane fluidity and fatty acid composition between phenotypic variants of Streptococcus pneumoniae. J Bacteriol 186:4638–4644

    Article  PubMed  CAS  Google Scholar 

  • Atlas RM (1993) Handbook of microbiological media. CRC Press, Boca Raton

    Google Scholar 

  • Bakermans C, Ayala-del-Río HL, Ponder MA, Vishnivetskaya T, Gilichinsky D, Thomashow MF, Tiedje JM (2006) Psychrobacter cryohalolentis sp nov. and Psychrobacter arcticus sp. nov. isolated from Siberian permafrost. Int J Sys Evol Microbiol 56:1285–1291

    Article  CAS  Google Scholar 

  • Bakermans C, Tollaksen SL, Giometti CS, Wilkerson C, Tiedje JM, Thomashow MF (2007) Proteomic analysis of Psychrobacter cryohalolentis K5 during growth at subzero temperatures. Extremophiles 11:345–354

    Article  CAS  Google Scholar 

  • Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and metabolism at–10°C of bacteria isolated from Siberian permafrost. Environ Microbiol 5:321–326

    Article  PubMed  Google Scholar 

  • Beney L, Mille Y, Gervais P (2004) Death of Escherichia coli during rapid and severe dehydration is related to lipid phase transition. Appl Microbiol Biotech 65:457–464

    Article  CAS  Google Scholar 

  • Bergholz PW, Bakermans C, Tiedje JM (2008) Resource efficiency and molecular motion dominate the transcriptome response during growth below 0°C in Psychrobacter arcticus 273-4 (submitted)

  • Blatny J, Brautaset T, Winther-Larsen H, Karunakaran P, Valla S (1997) Improved broad-host-range RK2 vectors useful for high and low regulated gene expression levels in Gram-negative bacteria. Plasmid 38:35–51

    Article  PubMed  CAS  Google Scholar 

  • Calvin NM, Hanawalt PC (1988) High-efficiency transformation of bacterial-cells by electroporation. J Bacteriol 170:2796–2801

    PubMed  CAS  Google Scholar 

  • Chandler MS (1991) New shuttle vectors for Haemophilus influenzae and Escherichia coli: P15A-derived plasmids replicate in H. influenzae Rd. Plasmid 25:221–224

    Article  PubMed  CAS  Google Scholar 

  • Cohen MF, Meeks JC, Cai YA, Wolk CP (1998) Transposon mutagenesis of heterocyst-forming filamentous cyanobacteria. Methods Enzymol 297:3–17

    Article  CAS  Google Scholar 

  • Denef VJ, Klappenbach JA, Patrauchan MA, Florizone C, Rodrigues JLM, Tsoi TV, Verstraete W, Eltis LD, Tiedje JM (2006) Genetic and genomic insights into the role of benzoate-catabolic pathway redundancy in Burkholderia xenovorans LB400. Appl Environ Microbiol 72:585–595

    Article  PubMed  CAS  Google Scholar 

  • Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351

    Article  PubMed  CAS  Google Scholar 

  • Elhai J, Wolk CP (1988) A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene 68:119–138

    Article  PubMed  CAS  Google Scholar 

  • Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76:1648–1652

    Article  PubMed  CAS  Google Scholar 

  • Harris FM, Best KB, Bell JD (2002) Use of laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order. Biochim Biophys Acta Biomembr 1565:123–128

    Article  CAS  Google Scholar 

  • He HJ, Gordon R, Gow JA (2001) The effect of temperature on the fatty acids and isozymes of a psychrotrophic and two mesophilic species of Xenorhabdus, a bacterial symbiont of entomopathogenic nematodes. Can J Microbiol 47:382–391

    Article  PubMed  CAS  Google Scholar 

  • Ishii A, Ochiai T, Imagawa S, Fukunaga N, Sasaki S, Minowa O, Mizuno Y, Shiokawa H (1987) Isozymes of isocitrate dehydrogenase from an obligately psychrophilic bacterium, Vibrio sp strain Abe-1—purification, and modulation of activities by growth-conditions. J Biochem 102:1489–1498

    PubMed  CAS  Google Scholar 

  • Ito M, Nagane M (2001) Improvement of the electro-transformation efficiency of facultatively alkaliphilic Bacillus pseudofirmus OF4 by high osmolarity and glycine treatment. Biosci Biotech Biochem 65:2773–2775

    Article  CAS  Google Scholar 

  • Kelly D, Thomas G (2001) The tripartite ATP-independent perimplasmic (TRAP) transporters of bacteria and archaea. FEMS Microb Rev 25:405–424

    Article  CAS  Google Scholar 

  • Kues U, Stahl U (1989) Replication of plasmids in Gram-negative bacteria. Microbiol Rev 53:491–516

    PubMed  CAS  Google Scholar 

  • Liang CC, Lee WC (1998) Characteristics and transformation of Zymomonas mobilis with plasmid pKT230 by electroporation. Bioprocess Eng 19:81–85

    CAS  Google Scholar 

  • Lin JJ, Somero GN (1995) Temperature-dependent changes in expression of thermostable and thermolabile isozymes of cytosolic malate-dehydrogenase in the eurythermal goby fish Gillichthys mirabilis. Physiol Zool 68:114–128

    CAS  Google Scholar 

  • Marcus NH (1977) Temperature induced isoenzyme variants in individuals of sea-urchin, Arbacia punctulata. Comp Biochem Physiol B Biochem Mol Biol 58:109–113

    Article  CAS  Google Scholar 

  • Marx CJ, Lidstrom ME (2002) Broad-host-range cre-lox system for antibiotic marker recycling in Gram-negative bacteria. Biotechniques 33:1062–1067

    PubMed  CAS  Google Scholar 

  • Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bradley P, Bork P, Bucher P, Cerutti L, Copley R, Courcelle E, Das U, Durbin R, Fleischmann W, Gough J, Haft D, Harte N, Hulo N, Kahn D, Kanapin A, Krestyaninova M, Lonsdale D, Lopez R, Letunic I, Madera M, Maslen J, McDowall J, Mitchell A, Nikolskaya AN, Orchard S, Pagni M, Ponting CP, Quevillon E, Selengut J, Sigrist CJA, Silventoinen V, Studholme DJ, Vaughan R, Wu CH (2005) InterPro, progress and status in 2005. Nucl Acids Res 33:D201–D205

    Article  PubMed  CAS  Google Scholar 

  • Myers C, Myers J (1997) Replication of plasmids with the p15A origin in Shewanella putrefaciens MR-1. Lett Appl Microbiol 24:221–225

    Article  PubMed  CAS  Google Scholar 

  • Nedwell DB (1999) Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microb Ecol 30:101–111

    Article  CAS  Google Scholar 

  • Ochiai T, Fukunaga N, Sasaki S (1979) Purification and some properties of two NADP+-specific isocitrate dehydrogenases from an obligately psychrophilic marine bacterium, Vibrio sp. strain Abe-1. J Biochem 86:377–384

    PubMed  CAS  Google Scholar 

  • Ochiai T, Fukunaga N, Sasaki S (1984) Two structurally different NADP-specific isocitrate dehydrogenases in an obligately psychrophilic bacterium, Vibrio sp strain Abe-1. J Gen Appl Microbiol 30:479–487

    Article  CAS  Google Scholar 

  • Ponder MA, Gilmour SJ, Bergholz PW, Mindock CA, Hollingsworth R, Thomashow MF, Tiedje JM (2005) Characterization of potential stress responses in ancient Siberian permafrost psychroactive bacteria. FEMS Microbiol Ecol 53:103–115

    Article  PubMed  CAS  Google Scholar 

  • Stretton S, Techkarnjanaruk S, McLennan AM, Goodman AE (1998) Use of green fluorescent protein to tag and investigate gene expression in marine bacteria. Appl Environ Microbiol 64:2554–2559

    PubMed  CAS  Google Scholar 

  • Tatebe W, Muraji M, Fujii T, Berg H (1995) Reexamination of electropermeabilization on yeast cells—dependence on growth-phase and ion concentration. Bioelectrochem Bioenerg 38:149–152

    Article  CAS  Google Scholar 

  • Tutino ML, Duilio A, Moretti MA, Sannia G, Marino G (2000) A rolling-circle plasmid from Psychrobacter sp. TA144: evidence for a novel Rep subfamily. Biochem Biophys Res Commun 274:488–495

    Article  PubMed  CAS  Google Scholar 

  • Tyurin MV, Desai SG, Lynd LR (2004) Electrotransformation of Clostridium thermocellum. Appl Environ Microbiol 70:883–890

    Article  PubMed  CAS  Google Scholar 

  • Vanounou S, Pines D, Pines E, Parola AH, Fishov I (2002) Coexistence of domains with distinct order and polarity in fluid bacterial membranes. Photochem Photobiol 76:1–11

    Article  PubMed  CAS  Google Scholar 

  • Vishnivetskaya T, Kathariou S, McGrath J, Gilichinsky D, Tiedje JM (2000) Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4:165–173

    Article  PubMed  CAS  Google Scholar 

  • Wei MQ, Rush CM, Norman JM, Hafner LM, Epping RJ, Timms P (1995) An improved method for the transformation of Lactobacillus strains using electroporation. J Microbiol Meth 21:97–109

    Article  Google Scholar 

  • Welsh DT (2000) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24:263–290

    Article  PubMed  CAS  Google Scholar 

  • Whyte LG, Inniss WE (1994) Electroporation and its effect on the psychrotrophic bacterium Bacillus psychrophilus. Can J Microbiol 40:83–89

    Article  CAS  Google Scholar 

  • Xue GP, Johnson JS, Dalrymple BP (1999) High osmolarity improves the electro-transformation efficiency of the Gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J Microbiol Meth 34:183–191

    Article  CAS  Google Scholar 

  • Yamawaki H, Tsukuda H (1979) Significance of the variation in isozymes of liver lactate-dehydrogenase with thermal acclimation in goldfish—thermostability and temperature dependency. Comp Biochem Physiol B Biochem Mol Biol 62:89–93

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported through membership in the NASA Astrobiology Institute. C. Bakermans was supported by a National Academy of Sciences National Research Council research associateship. We thank J. Klappenbach for providing pJK100 and E. coli WM3064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corien Bakermans.

Additional information

Communicated by T. Matsunaga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material (DOC 251 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakermans, C., Sloup, R.E., Zarka, D.G. et al. Development and use of genetic system to identify genes required for efficient low-temperature growth of Psychrobacter arcticus 273-4. Extremophiles 13, 21–30 (2009). https://doi.org/10.1007/s00792-008-0193-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-008-0193-3

Keywords

Navigation