Skip to main content
Log in

The stability of the archaeal HU histone-like DNA-binding protein from Thermoplasma volcanium

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The complete genome analysis of the archaeon Thermoplasma volcanium has revealed a gene assigned to encode the histone-like DNA-binding protein HU. Thermoplasma volcanium is a moderate thermophile growing around 60°C and it is adaptable to aerobic and anaerobic environment and therefore it is unique as a candidate for the origin of eukaryotic nuclei in the endosymbiosis hypothesis. The HU protein is the major component of the bacterial nuclei and therefore it is an important protein to be studied. The gene for HUTvo protein (huptvo) was cloned from the genomic DNA of T. volcanium and overexpressed in Escherichia coli. A fast and efficient purification scheme was established to produce an adequate amount of bioactive protein for biochemical and biophysical studies. Highly purified HUTvo was studied for its DNA-binding activity and thermostability. As studied by circular dichroism and high-precision differential scanning microcalorimetry, the thermal unfolding of HUTvo protein is reversible and can be well described by a two-state model with dissociation of the native dimeric state into denatured monomers. The ∆G versus T profile for HUTvo compared to the hyperthermophilic marine eubacterial counterpart from Thermotoga maritima, HUTmar, clearly shows that the archaeal protein has adopted a less efficient molecular mechanism to cope with high temperature. The molecular basis of this phenomenon is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Benitez-Cardoza CG, Rojo-Dominguez A, Hernandez-Arana A (2001) Temperature-induced denaturation and renaturation of triosephosphate isomerase from Saccharomyces cerevisiae: evidence of dimerization coupled to refolding of the thermally unfolded protein. Biochemistry 40:9049–9058

    Article  PubMed  CAS  Google Scholar 

  • Boelens R, Vis H, Vorgias CE, Wilson KS, Kaptein R (1996) Structure and dynamics of the DNA binding protein HU from Bacillus stearothermophilus by NMR spectroscopy. Biopolymers 40:553–559

    Article  PubMed  CAS  Google Scholar 

  • Bohm G, Muhr R, Jaenicke R (1992) Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng 5:191–195

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the determination of microgram quantities of protein utilising the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Castaing BC, Zelwer C, Laval J, Boiteux S (1995) HU protein of Escherichia coli binds specifically to DNA that contains single-strand breaks or gaps. J Biol Chem 270:10291–10296

    Article  PubMed  CAS  Google Scholar 

  • Christodoulou E, Rypniewski W, Vorgias CE (2003) High resolution X-ray structure of the DNA binding protein HU from the hyperthermophilic eubacterium Thermotoga maritima and the determinants of its thermostability. Extremophiles 7:111–122

    PubMed  CAS  Google Scholar 

  • Christodoulou E, Vorgias CE (2002) The thermostability of the DNA binding protein HU from mesophilic thermophilic and extreme thermophilic bacteria. Extremophiles 6:21–31

    Article  PubMed  CAS  Google Scholar 

  • Coste F, Hervouet N, Oberto J, Zelwer C, Castaing B (1999) Crystallization and preliminary X-ray diffraction analysis of the homodimeric form alpha2 of the HU protein from Escherichia coli. Acta Crystallogr Biol Crystallogr D55:1952–1954

    Article  CAS  Google Scholar 

  • Damodaran S (2003) In situ measurement of conformational changes in proteins at liquid interfaces by circular dichroism spectroscopy. Anal Bioanal Chem 376:182–188

    PubMed  CAS  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system on world wide web. http://www.pymol.org

  • Drlica K, Rouviere-Yaniv J (1987) Histonelike proteins of bacteria. Microbiol Rev 51:301–319

    PubMed  CAS  Google Scholar 

  • Durney MA, Wechselberger RW, Kalodimos CG, Kaptein R, Vorgias CE, Boelen R (2004) An alternate conformation of the hyperthermostable HU protein from Thermotoga maritima has unexpectedly high flexibility. FEBS Lett 563:49–54

    Article  PubMed  CAS  Google Scholar 

  • Esser D, Rudolph R, Jaenicke R, Bohm G (1999) The HU protein from Thermotoga maritima: recombinant expression, purification and physicochemical characterization of an extremely hyperthermophilic DNA-binding protein. J Mol Biol 291:1135–1146

    Article  PubMed  CAS  Google Scholar 

  • Futterer O, Angelov A, Liesegang H, Gottschalk G, Schleper C, Schepers B, Dock C, Antranikian G, Liebl W (2004) Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc Natl Acad Sci USA 101:9091–9096

    Article  PubMed  CAS  Google Scholar 

  • Gill CS, von Hippel PH (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182:319–326

    Article  PubMed  CAS  Google Scholar 

  • Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: multiple sequence alignments in PostScript. Bioinformatics 15:305–308

    Article  PubMed  CAS  Google Scholar 

  • Greenfield NJ (1996) Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Anal Biochem 235:1–10

    Article  PubMed  CAS  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  • Hilser VJ, Townsend BD, Freire E (1997) Structure-based statistical thermodynamic analysis of T4 lysozyme mutants: structural mapping of cooperative interactions. Biophys Chem 64:69–79

    Article  PubMed  CAS  Google Scholar 

  • Hwang DS, Kornberg A (1992) Opening of the replication origin of Escherichia coli by DnaA protein with protein HU or IHF. J Biol Chem 267:23083–23086

    PubMed  CAS  Google Scholar 

  • Jia X, Grove A, Ivancic M, Hsu VL, Geiduscheck EP, Kearns DR (1996) Structure of the Bacillus subtilis phage SPO1-encoded type II DNA-binding protein TF1 in solution. J Mol Biol 263:259–268

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Thornton JM (1996) Principles of protein-protein interactions derived from structural studies. Proc Natl Acad Sci USA 93:13–20

    Article  PubMed  CAS  Google Scholar 

  • Kamashev D, Rouvière-Yaniv J (2000) The histone-like protein HU binds specifically to DNA recombination and repair intermediates. EMBO J 23:6527–6535

    Article  Google Scholar 

  • Kawashima T, Amano N, Koike H, Makino S, Higuchi S, Kawashima-Ohya Y, Watanabe K, Yamazaki M, Kanehori K, Kawamoto T, Nunoshiba T, Yamamoto Y, Aramaki H, Makino K, Suzuki M (2000) Archaeal adaptation to higher temperatures revealed by genomic sequence of Thermoplasma volcanium. Proc Natl Acad Sci USA 97:14257–14262

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lavoie BD, Chaconas G (1994) A second high affinity HU binding site in the phage Mu transpososome. J Biol Chem 269:15571–15576

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Rendall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Manly SP, Matthews KS, Sturtevant JM (1985) Thermal denaturation of the core protein of lac repressor. Biochemistry 24:3842–3846

    Article  PubMed  CAS  Google Scholar 

  • Milardi D, Rosa CL, Grasso D (1996) Theoretical basis for differential scanning calorimetric analysis of multimeric proteins. Biophys Chem 62:95–108

    Article  PubMed  CAS  Google Scholar 

  • Oberto J, Drlica K, Rouviere-Yaniv J (1994) Histones, HMG, HU, IHF: meme combat. Biochimie 76:901–908

    Article  PubMed  CAS  Google Scholar 

  • Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423

    Article  PubMed  CAS  Google Scholar 

  • Padas PM, Wilson KS, Vorgias CE (1992) DNA binding protein from mesophilic and thermophilic Bacilli: cloning, overexpression and purification. Gene 117:39–44

    Article  PubMed  CAS  Google Scholar 

  • Pettijohn DE (1988) Histone-like proteins and bacterial chromosome structure. J Biol Chem 263:12793–12796

    PubMed  CAS  Google Scholar 

  • Privalov PL, Potekhin SA (1986) Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol 131:4–51

    Article  PubMed  CAS  Google Scholar 

  • Ramstein J, Hervouet N, Coste F, Zelwer C, Oberto J, Castaing B (2003) Evidence of a thermal unfolding dimeric intermediate for the Escherichia coli histone-like HU proteins: thermodynamics and structure. J Mol Biol 331:101–121

    Article  PubMed  CAS  Google Scholar 

  • Raves ML, Doreleijers J, Vis H, Vorgias CE, Wilson KS, Kaptein R (2001) Joint refinement as a tool for thorough comparison between NMR and X-ray data and structures of HU protein. J Biomol NMR 21:235–248

    Article  PubMed  CAS  Google Scholar 

  • Rice PA, Yang S-W, Mizuuchi K, Nash H (1996) Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 87:1295–1306

    Article  PubMed  CAS  Google Scholar 

  • Rouvière-Yaniv J, Yaniv M, Germond J (1979) E. coli DNA binding protein HU forms nucleosomelike structures with double-stranded DNA. Cell 17:265–274

    Article  PubMed  Google Scholar 

  • Ruepp A, Graml W, Santos-Martinez ML, Koretke KK, Volker C, Mewes HW, Frishman D, Stocker S, Lupas AN, Baumeister W (2000) The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature 407:508–513

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Sanz J, Filimonov VV, Christodoulou E, Vorgias CE, Mateo PL (2004) Thermodynamic analysis of the unfolding and stability of the dimeric DNA-binding protein HU from the hyperthermophilic eubacterium Thermotoga maritima and its E34D mutant. Eur J Biochem 271:1497–1507

    Article  PubMed  CAS  Google Scholar 

  • Sagi D, Friedman N, Vorgias CE, Oppenheim AB, Stavans J (2004) Modulation of DNA conformations through the formation of alternative high-order HU–DNA complexes. J Mol Biol 341:419–428

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Schmid MB (1990) More than just “histone-like” proteins. Cell 63:451–453

    Article  PubMed  CAS  Google Scholar 

  • Schnurr B, Vorgias CE, Stavans J (2006) Compaction and supercoiling of single, long DNA molecules by HU protein. Bioph Rev Lett 1:29–44

    Article  CAS  Google Scholar 

  • Serban D, Arcineigas SF, Vorgias CE, Thomas GJ Jr (2003) Structure and dynamics of the DNA-binding protein HU of B. stearothermophilus investigated by Raman and ultraviolet-resonance Raman spectroscopy. Protein Sci 12:861–870

    Article  PubMed  CAS  Google Scholar 

  • Tanaka I, Appelt K, Dijk J, White SW, Wilson KS (1984) 3-Å resolution structure of a protein with histone-like properties in prokaryotes. Nature 310:376–381

    Article  PubMed  CAS  Google Scholar 

  • Todd MJ, Semo N, Freire E (1998) The structural stability of the HIV-1 protease. J Mol Biol 283:475–488

    Article  PubMed  CAS  Google Scholar 

  • van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Hochschulverlag an der ETH Zürich/Biomos, Zürich/Groningen

    Google Scholar 

  • Vis H, Mariani M, Vorgias CE, Wilson KS, Kaptein R, Boelens R (1995) Solution structure of the HU protein from Bacillus stearothermophilus. J Mol Biol 254:692–703

    Article  PubMed  CAS  Google Scholar 

  • White SW, Appelt K, Wilson KS, Tanaka I (1989) A protein structural motif that bends DNA. Proteins 5:281–288

    Article  PubMed  CAS  Google Scholar 

  • White SW, Wilson KS, Appelt K, Tanaka I (1999) The high-resolution structure of DNA-binding protein HU from Bacillus stearothermophilus. Acta Crystallogr D55:801–809

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos E. Vorgias.

Additional information

F. Orfaniotou and P. Tzamalis contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orfaniotou, F., Tzamalis, P., Thanassoulas, A. et al. The stability of the archaeal HU histone-like DNA-binding protein from Thermoplasma volcanium . Extremophiles 13, 1–10 (2009). https://doi.org/10.1007/s00792-008-0190-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-008-0190-6

Keywords

Navigation