Skip to main content
Log in

Cold adaptation of eicosapentaenoic acid-less mutant of Shewanella livingstonensis Ac10 involving uptake and remodeling of synthetic phospholipids containing various polyunsaturated fatty acids

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

An Antarctic psychrotrophic bacterium, Shewanella livingstonensis Ac10, produces cis-5,8,11,14,17-eicosapentaenoic acid (EPA), a long-chain polyunsaturated fatty acid (LPUFA), as a component of membrane phospholipids at low temperatures. The EPA-less mutant generated by disruption of the EPA synthesis gene becomes cold-sensitive. We studied whether the cold sensitivity could be suppressed by supplementation of various LPUFAs. The EPA-less mutant was cultured at 6°C in the presence of synthetic phosphatidylethanolamines (PEs) that contained oleic acid at the sn-1 position and various C20 fatty acids with different numbers of double bonds from zero to five or cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) at the sn-2 position. Mass spectrometric analyses revealed that all these fatty acids became components of various PE and phosphatidylglycerol species together with shorter partner fatty acids, indicating that large-scale remodeling followed the incorporation of synthetic PEs. As the number of double bonds in the sn-2 acyl chain decreased, the growth rate decreased and the cells became filamentous. The growth was restored to the wild-type level only when the medium was supplemented with phospholipids containing EPA or DHA. We found that about a half of DHA was converted into EPA. The results suggest that intact EPA is best required for cold adaptation of this bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EPA:

cis-5,8,11,14,17-Eicosapentaenoic acid

DHA:

cis-4,7,10,13,16,19-Docosahexaenoic acid

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

LPUFA:

Long-chain polyunsaturated fatty acid

ESI-MS:

Electrospray ionization mass spectrometry

GC-MS:

Gas chromatography-mass spectrometry

LB:

Luria-Bertani

T m :

Phase transition temperature

2-acyl-GPE:

2-Acylglycerophosphoethanolamine

20:0:

Eicosanoic acid

20:1:

cis-11-Eicosenoic acid

20:2:

cis-11,14-Eicosadienoic acid

20:3:

cis-8,11,14-Eicosatrienoic acid

20:4:

cis-5,8,11,14-Eicosatetraenoic acid (arachidonic acid)

20:5:

cis-5,8,11,14,17-Eicosapentaenoic acid

22:6:

cis-4,7,10,13,16,19-Docosahexaenoic acid

18:1:

cis-9-Octadecenoic acid (oleic acid)

18:2:

cis-9,12-Octadecadienoic acid (linoleic acid)

α-18:3:

cis-9,12,15-Octadecatrienoic acid (α-linolenic acid)

γ-18:3:

cis-6,9,12-Octadecatrienoic acid (γ-linolenic acid)

15:0:

Pentadecanoic acid

16:1:

Hexadecenoic acid

17:0:

Heptadecanoic acid

17:1:

Heptadecenoic acid

References

  • Allen EE, Facciotti D, Bartlett DH (1999) Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl Environ Microbiol 65:1710–1720

    PubMed  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  • Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol (Noisy-le-grand) 50:631–642

    CAS  Google Scholar 

  • Coleman J (1992) Characterization of the Escherichia coli gene for 1-acyl-sn-glycerol-3-phosphate acyltransferase (plsC). Mol Gen Genet 232:295–303

    PubMed  CAS  Google Scholar 

  • Comfurius P, Zwaal RF (1977) The enzymatic synthesis of phosphatidylserine and purification by CM-cellulose column chromatography. Biochim Biophys Acta 488:36–42

    PubMed  CAS  Google Scholar 

  • Dekker N (2000) Outer-membrane phospholipase A: known structure, unknown biological function. Mol Microbiol 35:711–717

    Article  PubMed  CAS  Google Scholar 

  • Fang J, Kato C, Sato T, Chan O, McKay D (2004) Biosynthesis and dietary uptake of polyunsaturated fatty acids by piezophilic bacteria. Comp Biochem Physiol B Biochem Mol Biol 137:455–461

    Article  PubMed  Google Scholar 

  • Gupta CM, Radhakrishnan R, Khorana HG (1977) Glycerophospholipid synthesis: Improved general method and new analogs containing photoactivable groups. Proc Natl Acad Sci USA 74:4315–4319

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa M, Takahashi K, Hatano M, Egi M (1995) Phospholipase A2-mediated synthesis of phosphatidylethanolamine containing highly unsaturated fatty acids. Int J Food Sci Technol 29:721–725

    Google Scholar 

  • Hubbell WL, McConnell HM (1971) Molecular motion in spin-labeled phospholipids and membranes. J Am Chem Soc 93:314–326

    Article  PubMed  CAS  Google Scholar 

  • Kato C, Nogi Y (2001) Correlation between phylogenetic structure and function: examples from deep-sea Shewanella. FEMS Microbiol Ecol 35:223–230

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki K, Nogi Y, Hishinuma M, Nodasaka Y, Matsuyama H, Yumoto I (2002) Psychromonas marina sp. nov., a novel halophilic, facultatively psychrophilic bacterium isolated from the coast of the Okhotsk sea. Int J Syst Evol Microbiol 52:1455–1459

    Article  PubMed  Google Scholar 

  • Methe BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou L, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102:10913–10918

    Article  PubMed  CAS  Google Scholar 

  • Metz JG, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M, Valentine R, Lardizabal K, Domergue F, Yamada A, Yazawa K, Knauf V, Browse J (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293

    Article  PubMed  CAS  Google Scholar 

  • Nishida T, Morita N, Yano Y, Orikasa Y, Okuyama H (2007) The antioxidative function of eicosapentaenoic acid in a marine bacterium, Shewanella marinintestina IK-1. FEBS Lett 581:4212–4216

    Article  PubMed  CAS  Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    Article  PubMed  CAS  Google Scholar 

  • Russell NJ (1997) Psychrophilic bacteria–molecular adaptations of membrane lipids. Comp Biochem Physiol A Physiol 118:489–493

    Article  PubMed  CAS  Google Scholar 

  • Selinger Z, Lapidot Y (1966) Synthesis of fatty acid anhydrides by reaction with dicyclohexylcarbodiimide. J Lipid Res 7:174–175

    PubMed  CAS  Google Scholar 

  • Tsuruta H, Hayashi R, Ohkawa H, Ohkatsu N, Morimoto M, Nishimoto K, Santou S, Aizono Y (2007) Characteristics and gene cloning of phospholipase D of the psychrophile, Shewanella sp. Biosci Biotechnol Biochem 71:2534–2542

    Article  PubMed  CAS  Google Scholar 

  • Tu X, Hubbard PA, Kim JJ, Schulz H (2008) Two distinct proton donors at the active site of Escherichia coli 2, 4-dienoyl-CoA reductase are responsible for the formation of different products. Biochemistry 47:1167–1175

    Article  PubMed  CAS  Google Scholar 

  • Valentine RC, Valentine DL (2004) Omega-3 fatty acids in cellular membranes: a unified concept. Prog Lipid Res 43:383–402

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Wang J, Jian H, Zhang B, Li S, Wang F, Zeng X, Gao L, Bartlett DH, Yu J, Hu S, Xiao X (2008) Environmental adaptation: genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium Shewanella piezotolerans WP3. PLoS ONE 3:e1937

    Article  PubMed  Google Scholar 

  • Wang G, Li S, Lin H, Brumbaugh EE, Huang C (1999) Effects of various numbers and positions of cis double bonds in the sn-2 acyl chain of phosphatidylethanolamine on the chain-melting temperature. J Biol Chem 274:12289–12299

    Article  PubMed  CAS  Google Scholar 

  • Yamashita A, Kawagishi N, Miyashita T, Nagatsuka T, Sugiura T, Kume K, Shimizu T, Waku K (2001) ATP-independent fatty acyl-coenzyme A synthesis from phospholipid: coenzyme A-dependent transacylation activity toward lysophosphatidic acid catalyzed by acyl-coenzyme A:lysophosphatidic acid acyltransferase. J Biol Chem 276:26745–26752

    Article  PubMed  CAS  Google Scholar 

  • Yazawa K, Araki K, Okazaki N, Watanabe K, Ishikawa C, Inoue A, Numao N, Kondo K (1988) Production of eicosapentaenoic acid by marine bacteria. J Biochem 103:5–7

    PubMed  CAS  Google Scholar 

  • Zhang YM, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–233

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Global COE Program “Integrated Materials Science” (#B-09) (to N. E.), Grants-in-Aid for Scientific Research (B) 17404021 and 19404020 from JSPS (to T. K.), and a grant for Research for Promoting Technological Seeds from JST (to T. K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tatsuo Kurihara or Nobuyoshi Esaki.

Additional information

Communicated by L. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, S., Kurihara, T., Kawamoto, J. et al. Cold adaptation of eicosapentaenoic acid-less mutant of Shewanella livingstonensis Ac10 involving uptake and remodeling of synthetic phospholipids containing various polyunsaturated fatty acids. Extremophiles 12, 753–761 (2008). https://doi.org/10.1007/s00792-008-0182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-008-0182-6

Keywords

Navigation