Skip to main content

Advertisement

Log in

Vertical distribution of bacterial and archaeal communities along discrete layers of a deep-sea cold sediment sample at the East Pacific Rise (∼13°N)

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The community structure and vertical distribution of prokaryotes in a deep-sea (ca. 3,191 m) cold sediment sample (ca. 43 cm long) collected at the East Pacific Rise (EPR) ∼13°N were studied with 16SrDNA-based molecular analyses. Total community DNA was extracted from each of four discrete layers EPRDS-1, -2, -3 and -4 (from top to bottom) and 16S rDNA were amplified by PCR. Cluster analysis of DGGE profiles revealed that the bacterial communities shifted sharply between EPRDS-1 and EPRDS-2 in similarity coefficient at merely 49%. Twenty-three sequences retrieved from DGGE bands fell into 11 groups based on BLAST and bootstrap analysis. The dominant groups in the bacterial communities were Chloroflexi, Gamma proteobacteria, Actinobacterium and unidentified bacteria, with their corresponding percentages varying along discrete layers. Pairwise Fst (F-statistics) values between the archaeal clone libraries indicated that the archaeal communities changed distinctly between EPRDS-2 and EPRDS-3. Sequences from the archaeal libraries were divided to eight groups. Crenarchaea Marine Group I (MGI) was prevalent in EPRDS-1 at 83%, while Uncultured Crenarchaea group II B (UCII B) abounded in EPRDS-4 at 61%. Our results revealed that the vertically stratified distribution of prokaryotic communities might be in response to the geochemical settings and suggested that the sampling area was influenced by hydrothermalism. The copresence of members related to hydrothermalism and cold deep-sea environments in the microbial community indicated that the area might be a transitional region from hydrothermal vents to cold deep-sea sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alain K, Marteinsson VT, Miroshnichenko ML, Bonch-Osmolovskaya EA, Prieur D, Birrien JL (2002) Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1331–1339

    Article  PubMed  CAS  Google Scholar 

  • Arakawa S, Sato T, Yoshida Y, Usami R, Kato C (2006) Comparison of the microbial diversity in cold-seep sediments from different depths in the Nankai Trough. J Gen Appl Microbiol 52:47–54

    Article  PubMed  CAS  Google Scholar 

  • Audiffrin C, Cayol JL, Joulian C, Casalot L, Thomas P, Garcia JL, Ollivier B (2003) Desulfonauticus submarinus gen. nov., sp. nov., a novel sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:1585–1590

    Article  PubMed  CAS  Google Scholar 

  • Barbier G, Godfroy A, Meunier JR, Querellou J, Cambon MA, Lesongeur F, Grimont PA, Raguenes G (1999) Pyrococcus glycovorans sp. nov., a hyperthermophilic archaeon isolated from the East Pacific Rise. Int J Syst Bacteriol 49(Pt 4):1829–1837

    Article  PubMed  CAS  Google Scholar 

  • Barns SM, Fundyga RE, Jeffries MW, Pace NR (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA 91:1609–1613

    Article  PubMed  CAS  Google Scholar 

  • Briee C, Moreira D, Lopez-Garcia P (2007) Archaeal and bacterial community composition of sediment and plankton from a suboxic freshwater pond. Res Microbiol 158:213–227

    Article  PubMed  CAS  Google Scholar 

  • Chandler DP, Brockman FJ, Bailey TJ, Fredrickson JK (1998) Phylogenetic diversity of archaea and bacteria in a deep subsurface paleosol. Microb Ecol 36:37–50

    Article  PubMed  CAS  Google Scholar 

  • Colwell F, Matsumoto R, Reed D (2004) A review of the gas hydrates, geology, and biology of the Nankai Trough. Chem Geol 205:391–404

    Article  CAS  Google Scholar 

  • Ehrhardt CJ, Haymon RM, Lamontagne MG, Holden PA (2007) Evidence for hydrothermal Archaea within the basaltic flanks of the East Pacific Rise. Environ Microbiol 9:900–912

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:4

    Google Scholar 

  • Fry JC, Webster G, Cragg BA, Weightman AJ, Parkes RJ (2006) Analysis of DGGE profiles to explore the relationship between prokaryotic community composition. FEMS Microbiol Ecol 58:86–98

    Article  PubMed  CAS  Google Scholar 

  • GB18668 (2002) Marine sediment quality General administration of quality supervision, inspection and quarantine of the People’s Republic of China

  • Hekinian R, Fevrier M, Avedik F, Cambon P, Charlou JL, Needham HD, Raillard J, Boulegue J, Merlivat L, Moinet A, Manganini S, Lange J (1983) East Pacific Rise near 13{degrees}N: geology of new hydrothermal fields. Science 219:1321–1324

    Article  PubMed  Google Scholar 

  • Hoj L, Olsen RA, Torsvik VL (2005) Archaeal communities in High Arctic wetlands at Spitsbergen, Norway (78 degrees N) as characterized by 16S rRNA gene fingerprinting. FEMS Microbiol Ecol 53:89–101

    Article  PubMed  CAS  Google Scholar 

  • Holoman TR, Elberson MA, Cutter LA, May HD, Sowers KR (1998) Characterization of a defined 2,3,5,6-tetrachlorobiphenyl-ortho-dechlorinating microbial community by comparative sequence analysis of genes coding for 16S rRNA. Appl Environ Microbiol 64:3359–3367

    PubMed  CAS  Google Scholar 

  • Huber JA, Butterfield DA, Baross JA (2002) Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat. Appl Environ Microbiol 68:1585–1594

    Article  PubMed  CAS  Google Scholar 

  • Inagaki F, Kuypers MM, Tsunogai U, Ishibashi J, Nakamura K, Treude T, Ohkubo S, Nakaseama M, Gena K, Chiba H, Hirayama H, Nunoura T, Takai K, Jorgensen BB, Horikoshi K, Boetius A (2006a) Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system. Proc Natl Acad Sci USA 103:14164–14169

    Article  PubMed  CAS  Google Scholar 

  • Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell FS, Nealson KH, Horikoshi K, D’Hondt S, Jorgensen BB (2006b) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci USA 103:2815–2820

    Article  PubMed  CAS  Google Scholar 

  • Jeanthon C, L’Haridon S, Reysenbach AL, Corre E, Vernet M, Messner P, Sleytr UB, Prieur D (1999) Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213T as Methanococcus fervens sp. nov. Int J Syst Bacteriol 49(Pt 2):583–589

    PubMed  Google Scholar 

  • Kanagawa T (2003) Bias and artifacts in multitemplate polymerase chain reactions (PCR). J Biosci Bioeng 96:317–323

    PubMed  CAS  Google Scholar 

  • Kanokratana P, Chanapan S, Pootanakit K, Eurwilaichitr L (2004) Diversity and abundance of Bacteria and Archaea in the Bor Khlueng Hot Spring in Thailand. J Basic Microbiol 44:430–444

    Article  PubMed  Google Scholar 

  • Kato C, Li L, Tamaoka J, Horikoshi K (1997) Molecular analyses of the sediment of the 11,000-m deep Mariana Trench. Extremophiles 1:117–123

    Article  PubMed  CAS  Google Scholar 

  • Kendall MM, Wardlaw GD, Tang CF, Bonin AS, Liu Y, Valentine DL (2007) Diversity of Archaea in marine sediments from Skan Bay, Alaska, including cultivated methanogens, and description of Methanogenium boonei sp. nov. Appl Environ Microbiol 73:407–414

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Larkin JM, Henk MC (1996) Filamentous sulfide-oxidizing bacteria at hydrocarbon seeps of the Gulf of Mexico. Microsc Res Tech 33:23–31

    Article  PubMed  CAS  Google Scholar 

  • Losekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R (2007) Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microbiol 73:3348–3362

    Article  PubMed  CAS  Google Scholar 

  • MacGregor BJ, Moser DP, Baker BJ, Alm EW, Maurer M, Nealson KH, Stahl DA (2001) Seasonal and spatial variability in Lake Michigan sediment small-subunit rRNA concentrations. Appl Environ Microbiol 67:3908–3922

    Article  PubMed  CAS  Google Scholar 

  • Madrid VM, Taylor GT, Scranton MI, Chistoserdov AY (2001) Phylogenetic diversity of bacterial and archaeal communities in the anoxic zone of the Cariaco Basin. Appl Environ Microbiol 67:1663–1674

    Article  PubMed  CAS  Google Scholar 

  • Margalef R (1958) Information theory in ecology. Gen Syst 3:36

    Google Scholar 

  • Marteinsson VT, Hauksdottir S, Hobel CF, Kristmannsdottir H, Hreggvidsson GO, Kristjansson JK (2001) Phylogenetic diversity analysis of subterranean hot springs in Iceland. Appl Environ Microbiol 67:4242–4248

    Article  PubMed  CAS  Google Scholar 

  • Martin AP (2002) Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl Environ Microbiol 68:3673–3682

    Article  PubMed  CAS  Google Scholar 

  • Martiny JB, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreas L, Reysenbach AL, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112

    Article  PubMed  CAS  Google Scholar 

  • Menard HW (1960) The East Pacific Rise. Science 132:1737–1746

    Article  PubMed  Google Scholar 

  • Miroshnichenko ML, Kostrikina NA, L’Haridon S Jeanthon C, Hippe H, Stackebrandt E, Bonch-Osmolovskaya EA (2002) Nautilia lithotrophica gen. nov., sp. nov., a thermophilic sulfur-reducing epsilon-proteobacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1299–1304

    Article  PubMed  CAS  Google Scholar 

  • Moussard H, Corre E, Cambon-Bonavita MA, Fouquet Y, Jeanthon C (2006a) Novel uncultured Epsilonproteobacteria dominate a filamentous sulphur mat from the 13 degrees N hydrothermal vent field, East Pacific Rise. FEMS Microbiol Ecol 58:449–463

    Article  PubMed  CAS  Google Scholar 

  • Moussard H, Moreira D, Cambon-Bonavita MA, Lopez-Garcia P, Jeanthon C (2006b) Uncultured Archaea in a hydrothermal microbial assemblage: phylogenetic diversity and characterization of a genome fragment from a euryarchaeote. FEMS Microbiol Ecol 57:452–469

    Article  PubMed  CAS  Google Scholar 

  • Munson MA, Nedwell DB, Embley TM (1997) Phylogenetic diversity of Archaea in sediment samples from a coastal salt marsh. Appl Environ Microbiol 63:4729–4733

    PubMed  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Nercessian O, Bienvenu N, Moreira D, Prieur D, Jeanthon C (2005) Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments. Environ Microbiol 7:118–132

    Article  PubMed  CAS  Google Scholar 

  • Nercessian O, Reysenbach AL, Prieur D, Jeanthon C (2003) Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13 degrees N). Environ Microbiol 5:492–502

    Article  PubMed  Google Scholar 

  • Newberry CJ, Webster G, Cragg BA, Parkes RJ, Weightman AJ, Fry JC (2004) Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environ Microbiol 6:274–287

    Article  PubMed  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  PubMed  CAS  Google Scholar 

  • Pielou EC (1966) Species-diversity and pattern-diversity in the study of ecological succession. J Theor Biol 10:370–383

    Article  PubMed  CAS  Google Scholar 

  • Reed AJ, Lutz RA, Vetriani C (2006) Vertical distribution and diversity of bacteria and archaea in sulfide and methane-rich cold seep sediments located at the base of the Florida Escarpment. Extremophiles 10:199–211

    Article  PubMed  CAS  Google Scholar 

  • Rohlf FJ (1998) NTSYS-pc, numerical taxonomy and multivariate analysis system version 2.02. Exeter Publications, Setauket

    Google Scholar 

  • Schrenk MO, Kelley DS, Delaney JR, Baross JA (2003) Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl Environ Microbiol 69:3580–3592

    Article  PubMed  CAS  Google Scholar 

  • Schwarz JI, Eckert W, Conrad R (2007) Community structure of Archaea and Bacteria in a profundal lake sediment Lake Kinneret (Israel). Syst Appl Microbiol 30:239–254

    Article  PubMed  CAS  Google Scholar 

  • Shannon C, Weaver (1949) The mathematical theory of communication. University of Illinois Press, Urbana

  • Slobodkin A, Campbell B, Cary SC, Bonch-Osmolovskaya E, Jeanthon C (2001) Evidence for the presence of thermophilic Fe(III)-reducing microorganisms in deep-sea hydrothermal vents at 13 degrees N (East Pacific Rise). FEMS Microbiol Ecol 36:235–243

    PubMed  CAS  Google Scholar 

  • Sorensen KB, Lauer A, Teske A (2004) Archaeal phylotypes in a metal-rich and low-activity deep subsurface sediment of the Peru Basin, ODP Leg 201, Site 1231. Geobiology 2:151–161

    Article  CAS  Google Scholar 

  • Staley JT, Gosink JJ (1999) Poles apart: biodiversity and biogeography of sea ice bacteria. Annu Rev Microbiol 53:189–215

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Oida H, Suzuki Y, Hirayama H, Nakagawa S, Nunoura T, Inagaki F, Nealson KH, Horikoshi K (2004) Spatial distribution of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems. Appl Environ Microbiol 70:2404–2413

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  PubMed  CAS  Google Scholar 

  • von Wintzingerode F, Gobel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    Article  Google Scholar 

  • Wang P, Xiao X, Wang F (2005) Phylogenetic analysis of Archaea in the deep-sea sediments of west Pacific Warm Pool. Extremophiles 9:209–217

    Article  PubMed  CAS  Google Scholar 

  • Wani AA, Surakasi VP, Siddharth J, Raghavan RG, Patole MS, Ranade D, Shouche YS (2006) Molecular analyses of microbial diversity associated with the Lonar soda lake in India: an impact crater in a basalt area. Res Microbiol 157:928–937

    Article  PubMed  CAS  Google Scholar 

  • Wawrik B, Kutliev D, Abdivasievna UA, Kukor JJ, Zylstra GJ, Kerkhof L (2007) Biogeography of actinomycete communities and type II polyketide synthase genes in soils collected in New Jersey and Central Asia. Appl Environ Microbiol 73:2982–2989

    Article  PubMed  CAS  Google Scholar 

  • Wilms R, Sass H, Kopke B, Koster J, Cypionka H, Engelen B (2006) Specific bacterial, archaeal, and eukaryotic communities in tidal-flat sediments along a vertical profile of several meters. Appl Environ Microbiol 72:2756–2764

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Yan B, Hong K, Yu ZN (2006a) Archaeal communities in mangrove soil characterized by 16S rRNA gene clones. J Microbiol 44:566–571

    PubMed  CAS  Google Scholar 

  • Yan T, Ye Q, Zhou J, Zhang CL (2006b) Diversity of functional genes for methanotrophs in sediments associated with gas hydrates and hydrocarbon seeps in the Gulf of Mexico. FEMS Microbiol Ecol 57:251–259

    Article  PubMed  CAS  Google Scholar 

  • Yanagibayashi M, Nogi Y, Li L, Kato C (1999) Changes in the microbial community in Japan Trench sediment from a depth of 6292 m during cultivation without decompression. FEMS Microbiol Lett 170:271–279

    Article  PubMed  CAS  Google Scholar 

  • Zeidner G, Beja O (2004) The use of DGGE analyses to explore eastern Mediterranean and Red Sea marine picophytoplankton assemblages. Environ Microbiol 6:528–534

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. T Xiao at Institute of Oceanology, CAS, for providing equipments for DGGE experiment. This work was supported by the Key Innovative Project of Chinese Academy of Science (KZCX3-SW-223, KSCX2-YW-G-022, 2007-1), and the CAS/SAFEA International Partnership Program for Creative Research Teams (Research and Applications of Marine Functional Genomics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Qin.

Additional information

Communicated by L. Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Li, F., Zhang, X. et al. Vertical distribution of bacterial and archaeal communities along discrete layers of a deep-sea cold sediment sample at the East Pacific Rise (∼13°N). Extremophiles 12, 573–585 (2008). https://doi.org/10.1007/s00792-008-0159-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-008-0159-5

Keywords

Navigation