Skip to main content
Log in

Purine nucleoside phosphorylase from Pseudoalteromonas sp. Bsi590: molecular cloning, gene expression and characterization of the recombinant protein

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The gene encoding purine nucleoside phosphorylase (PNP) from the cold-adapted marine bacterium Pseudoalteromonas sp. Bsi590 was identified, cloned and expressed in Escherichia coli. The gene encodes a polypeptide of 233 amino acids with a calculated molecular weight of 25,018 Da. Pseudoalteromonas sp. Bsi590 PNP (PiPNP) shares 60% amino sequence identity and conservation of amino acid residues involved in catalysis with mesophilic Escherichia coli deoD-encoded purine nucleoside phosphorylase (EcPNP). N-terminal his-tagged PiPNP and EcPNP were purified to apparent homogeneity using Ni2+-chelating column. Compared with EcPNP, PiPNP possessed a lower temperature optimum and thermal stability. As for PNP enzymes in general, PiPNP and EcPNP displayed complicated kinetic properties; PiPNP possessed higher K m and catalytic efficiency (k cat/K m ) compared to EcPNP at 37°C. Substrate specificity results showed PiPNP catalyzed the phosphorolytic cleavage of 6-oxopurine and 6-aminopurine nucleosides (or 2-deoxynucleosides), and to a lesser extent purine arabinosides. PiPNP showed a better activity with inosine while no activity toward pyrimidine nucleosides. The protein conformation was analyzed by temperature perturbation difference spectrum. Results showed that PiPNP had lower conformation transition point temperature than EcPNP; phosphate buffer and KCl had significant influence on PiPNP protein conformation stability and thermostability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PiPNP:

Pseudoalteromonas sp. Bsi590 purine nucleoside phosphorylase

EcPNP:

Escherichia coli purine nucleoside phosphorylase

References

  • Appleby TC, Mathews II, Porcelli M, Cacciapuoti G , Ealick SE (2001) Three-dimensional structure of a hyperthermophilic 5′-deoxy-5′-methylthioadenosine phosphorylase from Sulfolobus solfataricus. J Biol Chem 42:39232–39242

    Article  Google Scholar 

  • Bennett EM, Li CL, Allan PW, Parker WB, Ealick SE (2003) structural basis for substrate specificity of Escherichia coli purine nucleoside phosphorylase. J Biol Chem 278:47110–47118

    Article  PubMed  CAS  Google Scholar 

  • Bzowska A, Kulikowska E, Shugar D (2000) Purine nucleoside phosphorylases: properties, functions, and clinical aspects. Pharmacol Ther 88:349–425

    Article  PubMed  CAS  Google Scholar 

  • Cacciapuoti G, Servillo L, Moretti M, Porcelli M (2001) Conformational changes and stabilization induced by phosphate binding to 5′-methylthioadenosine phosphorylase from the thermophilic archaeon Sulfolobus solfataricus. Extremophiles 5:295–302

    Article  PubMed  CAS  Google Scholar 

  • Claudine M, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D’Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parrilli E, Rocha EPC, Rouy Z, Sekowska A, Tutino ML, Vallenet D, Heijne GV, Danchin A (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335

    Google Scholar 

  • Elizabeth SL, Martinez N, Rogert MC (2000) An improved microbial synthesis of purine nucleosides. Biotechnol Lett 22:1277–1280

    Article  Google Scholar 

  • Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation Cell. Mol Life Sci 53:830–841

    CAS  Google Scholar 

  • Feller G, Narinx E, Arpigny JL, Aittaleb M, Baise E, Genicot S (1996) Enzymes from psychrophilic organisms. FEMS Microbiol Rev 18:189–202

    Article  CAS  Google Scholar 

  • Gao T, Li WZ, Liang SH, Li XH, Ren DM (2007) Enzymatic synthesis of 6-methylpurine-2’-deoxyriboside by recombinant purine nucleoside phosphorylase. Ind Microbiol 37(1):8–13

    CAS  Google Scholar 

  • Hughes BW, Wells AH, Bebok Z (1995) Bystander killing of melanoma cells using the human tyrosinase promoter to express the Escherichia coli purine nucleoside phosphorylase gene. Cancer Res 55:3339–3345

    PubMed  CAS  Google Scholar 

  • Jensen KF, Nygaard P (1975) Purine nucleoside phosphorylase form Salmonella typhimurium and Escherichia coli. Purification and some properties. Eur J Biochem 51:253–265

    Article  PubMed  CAS  Google Scholar 

  • Kim BK, Cha S, Parks RE (1968) Purine nucleoside phosphorylase from human erythrocytes: II. Kinetic analysis and substrate-binding studies. J Biol Chem 243:1771–1776

    PubMed  CAS  Google Scholar 

  • Koszalka GW, Vanhooke J, Steven AS, Hall WW (1988) Purification and properties of inosine-guanosine phosphorylase from Escherichia coli K-12. J Bacteriol 170:3493–3498

    PubMed  CAS  Google Scholar 

  • Krenitzky T, Koszalka G (1981) Purine nucleoside synthesis, an efficient method employing nucleoside phosphorylases. Biochemistry 20:3615–3621

    Article  Google Scholar 

  • Li XH, Sun JK, Gao T, Ren DM (2006) Cloning and expression of purine nucleoside phosphorylase in Escherichia coli. Ind Microbiol 36(3):8–13

    Google Scholar 

  • Ling F, Inuoe Y, Kimura A (1994) Induction, purification and utilization of purine nucleoside phosphorylase and uridine phosphorylase from Klebsiella sp. Process Biochem 29:355–361

    Article  CAS  Google Scholar 

  • Lorentzen MS, Moe E, Jouve HM, Willassen NP (2006) Cold adapted features of Vibrio salmonicida catalase: characterization and comparison to the mesophilic counterpart from Proteus mirabilis. Extremophiles 10:427–440

    Article  PubMed  CAS  Google Scholar 

  • Murakami K, Tsushima K (1975) Crystallization and some properties of purine nucleoside phosphorylase from chicken liver. Biochim Biophys Acta 384:390–398

    PubMed  CAS  Google Scholar 

  • Parks RE, Agarwal RP (1972) Purine nucleoside phosphorylase. Enzymes 7:483–514

    Article  CAS  Google Scholar 

  • Pugmire MJ, Ealick SE (2002) Structural analysis reveals two distinct families of nucleoside phosphorylases. Biochem J 361:1–25

    Article  PubMed  CAS  Google Scholar 

  • Ropp A,Traut TW (1991) Allosteric regulation of purine nucleoside phosphorylase. Arch Biochem Biophys 288:614–620

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell D (2002) Molecular cloning: a laboratory manual. 3rd end. Science Press, Beijing

    Google Scholar 

  • Sorscher EJ, Peng S, Bebok Z, Allan PW, Bennett LL Jr, Parker WB (1994) Tumour bystander killing in colonic carcinoma utilizing the Escherichia coli deoD gene to generate toxic purines. Gene Ther 1:233–238

    PubMed  CAS  Google Scholar 

  • Stoeckler JD, Agarwal RP, Agarwal KC, Parks RE (1978) Purine nucleoside phosphorylase from human erythrocytes. Methods Enzymol 51:530–538

    Article  PubMed  CAS  Google Scholar 

  • Tebbe J, Wielgus-Kutrowska B, Schroeder W, Luic M, Shugar D,Saenger W, Koellner G, Bzowska A (1997) Purine nucleoside phosphorylase (PNP) from Cellulomonas sp., a different class of PNP different from both “low-molecular weight” mammalian and “high molecular weight” bacterial PNPs. Protein Eng 10(Suppl.):90

    CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Utagawa T, Hirokazu M, Fumihiro Y (1985) Microbiological synthesis of adeninearabinoside. Agric Biol Chem 49(4):1053–1058

    CAS  Google Scholar 

  • Yang Z, Parker WB, Sorscher EJ, Ealick SE (2005) PNP Anticancer gene therapy. Curr Topics Med Chem 5:1259–1274

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely thank Dr. Li Huirong of the Polar Reasearch Institute of China for the donation of Pseudoalteromonas spp. We are also grateful to the State Key Lab of Genetic Engineering for HPLC and CD measurements. We thank Ji Chaoneng and Hu Hairong for expert technical assistance. This work was financially supported by National Natural Science Foundation of China under the grant number 40376001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daming Ren.

Additional information

Communicated by K. Horikoshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Jiang, X., Li, H. et al. Purine nucleoside phosphorylase from Pseudoalteromonas sp. Bsi590: molecular cloning, gene expression and characterization of the recombinant protein. Extremophiles 12, 325–333 (2008). https://doi.org/10.1007/s00792-007-0131-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-007-0131-9

Keywords

Navigation