, Volume 11, Issue 3, pp 425–434 | Cite as

Extreme arsenic resistance by the acidophilic archaeon ‘Ferroplasma acidarmanus’ Fer1

  • Craig Baker-Austin
  • Mark Dopson
  • Margaret Wexler
  • R. Gary Sawers
  • Ann Stemmler
  • Barry P. Rosen
  • Philip L. BondEmail author
Original Paper


Ferroplasma acidarmanus’ Fer1 is an arsenic-hypertolerant acidophilic archaeon isolated from the Iron Mountain mine, California; a site characterized by heavy metals contamination. The presence of up to 10 g arsenate per litre [As(V); 133 mM] did not significantly reduce growth yields, whereas between 5 and 10 g arsenite per litre [As(III); 67–133 mM] significantly reduced the yield. Previous bioinformatic analysis indicates that ‘F. acidarmanus’ Fer1 has only two predicted genes involved in arsenic resistance and lacks a recognizable gene for an arsenate reductase. Biochemical analysis suggests that ‘F. acidarmanus’ Fer1 does not reduce arsenate indicating that ‘F. acidarmanus’ Fer1 has an alternative resistance mechanism to arsenate other than reduction to arsenite and efflux. Primer extension analysis of the putative ars transcriptional regulator (arsR) and efflux pump (arsB) demonstrated that these genes are co-transcribed, and expressed in response to arsenite, but not arsenate. Two-dimensional polyacrylamide gel electrophoresis analysis of ‘F. acidarmanus’ Fer1 cells exposed to arsenite revealed enhanced expression of proteins associated with protein refolding, including the thermosome Group II HSP60 family chaperonin and HSP70 DnaK type heat shock proteins. This report represents the first molecular and proteomic study of arsenic resistance in an acidophilic archaeon.


Ferroplasma Arsenic resistance Arsenite Proteomics Primer extension 



Mineral salts medium


Reverse transcriptase polymerase chain reaction


Two-dimensional polyacrylamide gel electrophoresis


Matrix-assisted laser desorption ionization time-of-flight


Inductively coupled plasma-mass spectrometry


High pressure liquid chromatography


Tricarboxylic acid


Acetyl-coenzyme A



We thank Fran Mulholland, Andy Johnston, and Lynda Flegg for technical assistance and suggestions regarding this work. Trypsin digestions and MALDI-TOF MS were performed at the John Innes Proteomics facility, Norwich, UK. C.B.A was funded by a BBSRC studentship. A.S. and B.P.R. were supported by United States Public Health Service Grant GM55425.

Supplementary material


  1. Baker-Austin C (2005) Investigations in the extremely acidophilic archaeon “Ferroplasma acidarmanus”, initial characterisation, application of proteomics and analysis of metal resistance. Department of Biological Sciences, University of East Anglia, NorwichGoogle Scholar
  2. Baker-Austin C, Dopson M, Wexler M, Sawers G, Bond PL (2005) Molecular insight into extreme copper resistance in the extremophilic archaeon “Ferroplasma acidarmanus” Fer1. Microbiology 151:2637–2646PubMedCrossRefGoogle Scholar
  3. Busenlehner LS, Pennella MA, Giedroc DP (2003) The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev 27:131–143PubMedCrossRefGoogle Scholar
  4. Butcher BG, Deane SM, Rawlings DE (2000) The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl Environ Microbiol 66:1826–1833PubMedCrossRefGoogle Scholar
  5. Dopson M, Lindström EB (1999) Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl Environ Microbiol 65:36–40PubMedGoogle Scholar
  6. Dopson M, Lindström EB, Hallberg KB (2001) Chromosomally encoded arsenical resistance of the moderately thermophilic acidophile Acidithiobacillus caldus. Extremophiles 5:247–255PubMedCrossRefGoogle Scholar
  7. Dopson M, Baker-Austin C, Koppineedi PR, Bond PL (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149:1959–1970PubMedCrossRefGoogle Scholar
  8. Dopson M, Baker-Austin C, Bond PL (2004a) First use of 2-dimensional polyacrylamide gel electrophoresis to determine phylogenetic relationships. J Microbiol Methods 58:297–302CrossRefGoogle Scholar
  9. Dopson M, Baker-Austin C, Hind A, Bowman JP, Bond PL (2004b) Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70:2079–2088CrossRefGoogle Scholar
  10. Dopson M, Baker-Austin C, Bond PL (2005) Analysis of differential protein expression during growth states of Ferroplasma strains and insights into electron transport for iron oxidation. Microbiology 151:4127–4137PubMedCrossRefGoogle Scholar
  11. Dopson M, Baker-Austin C, Bond PL (2006) Towards determining details of anaerobic growth coupled to ferric iron reduction by the acidophilic archaeon ‘Ferroplasma acidarmanus’ Fer1. Extremophiles (in press)Google Scholar
  12. Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799PubMedCrossRefGoogle Scholar
  13. Elvin CM, Hardy CM, Rosenberg H (1987) Molecular studies on the phosphate inorganic transport system of Escherichia coli. In: Torriani GA, Rothman FG, Silver S, Wright A, Yagil E (eds) Phosphate metabolism and cellular regulation in microorganisms. American Society for Microbiology, Washington DC, pp 156–158Google Scholar
  14. Fűtterer O et al (2004) Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc Natl Acad Sci USA 101:9091–9096PubMedCrossRefGoogle Scholar
  15. Gihring TM, Bond PL, Peters SC, Banfield JF (2003) Arsenic resistance in the archaeon “Ferroplasma acidarmanus”: new insights into the structure and evolution of the ars genes. Extremophiles 7:123–130PubMedGoogle Scholar
  16. de Groot P, Deane SM, Rawlings DE (2003) A transposon-located arsenic resistance mechanism from a strain of Acidithiobacillus caldus isolated from commercial, arsenopyrite biooxidation tanks. Hydrometallurgy 71:115–123CrossRefGoogle Scholar
  17. Hesketh A, et al (2002) The GlnD and GlnK homologues of Streptomyces coelicolor A3(2) are functionally dissimilar to their nitrogen regulatory system counterparts from enteric bacteria. Mol Microbiol 46:319–330PubMedCrossRefGoogle Scholar
  18. Jackson CR, Dugas SL (2003) Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase. BMC Evol Biol 3:1–10CrossRefGoogle Scholar
  19. Jones JG, Young DC, DasSarma S (1991) Structure and organization of the gas vesicle gene cluster on the Halobacterium halobium plasmid pNRC100. Gene 102:117–122PubMedCrossRefGoogle Scholar
  20. Kleerebezem M et al (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100:1990–1995PubMedCrossRefGoogle Scholar
  21. van Kranenburg R et al (2005) Functional analysis of three plasmids from Lactobacillus plantarum. Appl Environ Microbiol 71:1223–1230PubMedCrossRefGoogle Scholar
  22. Lin Y-F, Walmsley AR, Rosen BP (2006) An arsenic metallochaperone for an arsenic detoxification pump. Proc Natl Acad Sci USA 103:15617–15622PubMedCrossRefGoogle Scholar
  23. Liu J, Rosen BP (1997) Ligand interactions of the arsC arsenate reductase. J Biol Chem 272:21084–21089PubMedCrossRefGoogle Scholar
  24. Lynne S, Gurr JR, Lai H-T, Jan K-Y (2000) NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells. Circ Res 86:514–519Google Scholar
  25. Masullo M, Raimo G, Dello Russo A, Bocchini A, Bannister JV (1996) Purification and characterisation of NADH oxidase from the archaea Sulfolobus acidocaldarius and Sulfolobus solfataricus. Biotechnol Appl Biochem 23:47–54PubMedGoogle Scholar
  26. Meng Y-L, Liu Z, Rosen BP (2004) As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli. J Biol Chem 279:18334–18341PubMedCrossRefGoogle Scholar
  27. Mukhopadhyay R, Rosen BP (2002) Arsenate reductases in prokaryotes and eukaryotes. Environ Health Perspect 110:745–748PubMedGoogle Scholar
  28. Noel-Georis I, Vallaeys T, Chauvaux R, Monchy S, Falmagne R, Mergeay M, Wattiez R (2004) Global analysis of the Ralstonia metallidurans proteome: prelude for the large-scale study of heavy metal response. Proteomics 4:151–179PubMedCrossRefGoogle Scholar
  29. Nordstrom DK, Alpers CN (1999) Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the iron mountain superfund site, California. Proc Natl Acad Sci USA 96:3455–3462PubMedCrossRefGoogle Scholar
  30. Owolabi JB, Rosen BP (1990) Differential mRNA stability controls relative gene expression within the plasmid-encoded arsenical resistance operon. J Bacteriol 172:2367–2371PubMedGoogle Scholar
  31. Rosen BP (1999) Families of arsenic transporters. Trends Microbiol 7:207–212PubMedCrossRefGoogle Scholar
  32. Rottenberg H (1979) The measurement of membrane potential and ΔpH in cells, organelles, and vesicles. Methods Enzymol 55:547–569PubMedCrossRefGoogle Scholar
  33. Saha JC, Dikshit AK, Bandyopadhyay M, Saha KC (1999) A review of arsenic poisoning and its effects on human health. Crit Rev Environ Sci Technol 29:281–313CrossRefGoogle Scholar
  34. Sawers G, Bock A (1989) Novel transcriptional control of the pyruvate formate-lyase gene—upstream regulatory sequences and multiple promoters regulate anaerobic expression. J Bacteriol 171:2485–2498PubMedGoogle Scholar
  35. Seaver LC, Imlay JA (2001) Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol 183:7173–7181PubMedCrossRefGoogle Scholar
  36. Surin BP, Cox GB, Rosenberg H (1987) Molecular studies on the phosphate-specific system of Escherichia coli. In: Torriani GA, Rothman FG, Silver S, Wright A, Yagil E (eds) Phosphate metabolism and cellular regulation in microorganisms. American Society for Microbiology, Washington DC, pp 145–149Google Scholar
  37. Suzuki K, Wakao N, Kimura T, Sakka K, Ohmiya K (1998) Expression and regulation of the arsenic resistance operon of Acidiphilium multivorum AIU 301 plasmid pKW301 in Escherichia coli. Appl Environ Microbiol 64:411–418PubMedGoogle Scholar
  38. Tuffin IM, Hector SB, Deane SM, Rawlings DE (2006) Resistance determinants of a highly arsenic-resistant strain of Leptospirillum ferriphilum isolated from a commercial biooxidation tank. Appl Environ Microbiol 72:2247–2253PubMedCrossRefGoogle Scholar
  39. Vido K, Spector D, Lagniel G, Lopez S, Toledano MB, Labarre J (2001) A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J Biol Chem 276:8469–8474PubMedCrossRefGoogle Scholar
  40. Wang GJ, Kennedy SP, Fasiludeen S, Rensing C, DasSarma S (2004) Arsenic resistance in Halobacterium sp strain NRC-1 examined by using an improved gene knockout system. J Bacteriol 186:3187–3194PubMedCrossRefGoogle Scholar
  41. Wang L et al (2006) arsRBOCT arsenic resistance system encoded by linear plasmid pHZ227 in Streptomyces sp. strain FR-008. Appl Environ Microbiol 72:3738–3742PubMedCrossRefGoogle Scholar
  42. Williams CH (1995) Mechanism and structure of thioredoxin reductase from Escherichia coli. Faseb J 9:1267–1276PubMedGoogle Scholar
  43. Wong MD, Fan B, Rosen BP (2004) Bacterial transport ATPases for monovalent, divalent and trivalent soft metal ions. In: Futai M, Wada Y, Kaplan J (eds) Handbook of ATPases. Wiley, Wienheim, pp 159–176CrossRefGoogle Scholar
  44. Wu JH, Rosen BP (1993) Metalloregulated expression of the ars operon. J Biol Chem 268:52–58PubMedGoogle Scholar
  45. Xiang C, Kobayashi Y, Hayakawa T, Hirano S (2004) Arsenic speciation in bile and urine following oral and intravenous exposure to inorganic and organic arsenics in rats. Toxicol Sci 82:478–487CrossRefGoogle Scholar
  46. Xu C, Rosen BP (1999) Metalloregulation of soft metal resistance pumps. In: Sarkar B (ed) Metals and genetics. Plenum, New YorkGoogle Scholar
  47. Xu C, Shi WP, Rosen BP (1996) The chromosomal arsR gene of Escherichia coli encodes a trans-acting metalloregulatory protein. J Biol Chem 271:2427–2432PubMedCrossRefGoogle Scholar
  48. Yang H-C, Cheng J, Finan TM, Rosen BP, Bhattacharjee H (2005) Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J Bacteriol 187:6991–6997PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Craig Baker-Austin
    • 1
    • 6
  • Mark Dopson
    • 1
    • 2
  • Margaret Wexler
    • 1
  • R. Gary Sawers
    • 4
  • Ann Stemmler
    • 5
  • Barry P. Rosen
    • 5
  • Philip L. Bond
    • 1
    • 3
    • 7
    Email author
  1. 1.School of Biological SciencesUniversity of East AngliaNorwichUK
  2. 2.Molecular BiologyUmeå UniversityUmeåSweden
  3. 3.Centre for Ecology, Evolution and ConservationUniversity of East AngliaNorwichUK
  4. 4.Department of Molecular BiologyJohn Innes CentreNorwichUK
  5. 5.Department of Biochemistry and Molecular BiologyWayne State University, School of MedicineDetroitUSA
  6. 6.Savannah River Ecology LaboratoryUniversity of GeorgiaAikenUSA
  7. 7.Advanced Wastewater Management CentreUniversity of QueenslandBrisbaneAustralia

Personalised recommendations