Skip to main content
Log in

Continuous enrichment culturing of thermophiles under sulfate and nitrate-reducing conditions and at deep-sea hydrostatic pressures

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

A continuous culture bioreactor was developed to enrich for nitrate and sulfate reducing thermophiles under in situ deep-sea pressures. The ultimate objective of this experimental design was to be able to study microbial activities at chemical and physical conditions relevant to seafloor hydrothermal vents. Sulfide, sulfate and oxide minerals from sampled seafloor vent-chimney structures [East Pacific Rise (9°46′N)] served as source mineral and microbial inoculum for enrichment culturing using nitrate and sulfate-enriched media at 70 and 90°C and 250 bars. Changes in microbial diversity during the continuous reaction flow were monitored using denaturing gradient gel electrophoresis (DGGE) of PCR amplified 16S rRNA gene fragments. Time series changes in fluid chemistry were also monitored throughout the experiment to assess the feedback between mineral–fluid reaction and metabolic processes. Data indicate a shift from the dominance of epsilon Proteobacteria in the initial inoculum to the several Aquificales-like phylotypes in nitrate-reducing enrichment media and Thermodesulfobacteriales in the sulfate-reducing enrichment media. Methanogens were detected in the original sulfide sample and grew in selected sulfate-enriched experiments. Microbial interactions with anhydrite and pyrrhotite in the chimney material resulted in measurable changes in fluid chemistry despite a fluid residence time only 75 min in the reactor. Changes in temperature rather than source material resulted in greater differences in microbial enrichments and mediated geochemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguiar P, Beveridge TJ, Reysenbach A-L (2004) Sulfurihydrogenibium azorense, sp. nov. a novel thermophilic hydrogen-oxidizing microaerophile from terrestrial hot springs in the Azores. Int J Syst Evol Microbiol 54:33–39

    Article  PubMed  CAS  Google Scholar 

  • Alain K, Zbinden M, Le Bris N, Lesongeur F, Querellou J, Gaill F, Cambon-Bonavita M-A (2004) Early steps in microbial colonization processes at deep sea hydrothermal vents. Environ Microbiol 6:227–241

    Article  PubMed  Google Scholar 

  • Boone DR, Johnson RL, Liu Y (1989) Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl Environ Microbiol 55:1735–1741

    PubMed  CAS  Google Scholar 

  • Burggraf S, Fricke H, Neuner A, Kristjansson J, Rouvier P, Mandelco L, Woese CR, Stetter KO (1990) Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. Syst Appl Microbiol 13:263–269

    PubMed  CAS  Google Scholar 

  • Campbell BJ, Summers Engel A, Porter ML, Takai K (2006) The versatile ε proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4:458–468

    Article  PubMed  CAS  Google Scholar 

  • Cowen JP, Giovannoni SJ, Kenig F, Johnson HP, Butterfield D, Rappe MS, Hutnak M, Lam P (2003) Fluids from aging ocean crust that support microbial life. Science 299:120–123

    Article  PubMed  CAS  Google Scholar 

  • Cypionka H (2000) Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol 54:827–848

    Article  PubMed  CAS  Google Scholar 

  • Dannenberg S, Kroder M, Dilling W, Cypioka H (1992) Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria. Arch Microbiol 158:93–99

    Article  CAS  Google Scholar 

  • Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358

    Article  PubMed  CAS  Google Scholar 

  • Edgcomb VP, Molyneaux SJ, Saito MA, Lloyd KG, Boer S, Wirsen CO, Atkins MS, Teske A (2004) Sulfide ameliorates metal toxicity for deep-sea hydrothermal vent archaea. Appl Environ Microbiol 70:2551–2555

    Article  PubMed  CAS  Google Scholar 

  • Eder W, Huber R (2002) New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov. Extremophiles 6:309–318

    Article  PubMed  Google Scholar 

  • Edwards KJ, McCollom TM, Konishi H, Buseck PR (2003) Seafloor bioalteration of sulfide minerals: results from in situ incubation studies. Geochim Cosmochim Acta 67(15):2843–2856

    Article  CAS  Google Scholar 

  • Gotz D, Banta A, Beveridge TJ, Rushdi AI, Simoneit BRT, Reysenbach A-L (2002) Persephonella marina gen. nov., sp. nov., and Persephonella guaymasensis sp. nov., two novel thermophilic hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52:1349–1359

    Article  PubMed  CAS  Google Scholar 

  • Hentschel U, Felbeck H (1993) Nitrate respiration in the hydrothermal vent tubeworm Riftia pachyptila. Nature 366:338–340

    Article  CAS  Google Scholar 

  • Hoek J, Banta A, Hubler F, Reysenbach A-L (2003) Microbial diversity of a sulfide spire located in the Edmond deep-sea hydrothermal vent field on the Central Indian Ridge. Geobiology 1:119–127

    Article  CAS  Google Scholar 

  • Huber R, Wilharm T, Huber D, Trincone A, Burggraf S, Koenig H, Rachel R, Rockinger I, Fricke H, Stetter KO (1992) Aquifex pyrophilus gen. nov. sp. nov. represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15:340–351

    Google Scholar 

  • Huber H, Diller S, Horn C, Rachel R (2002a) Thermovibrio ruber gen. nov., sp. nov., an extremely thermophilic, chemolithoautotrophic, nitrate-reducing bacterium that forms a deep branch within the phylum Aquificae. Int J Syst Evol Microbiol 52:1859–1865

    Article  CAS  Google Scholar 

  • Huber JA, Butterfield DA, Baross JA (2002b) Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat. Appl Environ Microbiol 68:1585–1594

    Article  CAS  Google Scholar 

  • Jannasch HW, Wirsen CO, Doherty KW (1996) A pressurized chemostat for the study of marine barophilic and oligotrophic bacteria. Appl Environ Microbiol 62:1593–1596

    PubMed  CAS  Google Scholar 

  • Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934

    Article  PubMed  CAS  Google Scholar 

  • Kashefi K, Tor JM, Holmes DE, Van Praugh CVG, Reysenbach A-L, Lovley DR (2002) Geoglobus ahangari, gen. nov., sp., nov., a novel hyperthermophile capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe (III) serving as the sole electron accepter. Int J Syst Evol Microbiol 52:719–728

    Article  PubMed  CAS  Google Scholar 

  • L’Haridon S, Cilia V, Messner P, Raguenes G, Gambacorta A, Sleytr UB, Prieur D, Jeanthon C (1998) Desulfurobacterium thermolithotrophicum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48:701–711

    Article  PubMed  CAS  Google Scholar 

  • Lloyd KG, Edgcomb VP, Molyneaux SJ, Böer S, Wirsen CO, Atkins MS, Teske A (2005) Effects of dissolved sulfide, pH, and temperature on growth and survival of marine hyperthermophilic Archaea. Appl Environ Microbiol 71:6383–6387

    Article  PubMed  CAS  Google Scholar 

  • Longnecker K, Reysenbach A-L (2001) Expansion of the geographic distribution of a novel lineage of ε-Proteobacteria to a hydrothermal vent site on the Southern East Pacific Rise. FEMS Microbiol Ecol 35:287–293

    PubMed  CAS  Google Scholar 

  • Machel HG (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings: old and new insights. Sediment Geol 140:143–175

    Article  CAS  Google Scholar 

  • Marteinsson VT, Reysenbach A-L, Birrien J-L, Prieur D (1999) A stress protein is induced in the deep-sea barophilic hyperthermophile Thermococcus barophilus when grown under atmospheric pressure. Extremophiles 3:277–282

    Article  PubMed  CAS  Google Scholar 

  • McCliment EA, Voglesonger KM, O’Day PA, Dunn EE, Holloway JR, Cary SC (2006) Colonization of nascent, deep-sea hydrothermal vents by a novel archaeal and nanoarchaeal assemblage. Environ Microbiol 8:114–125

    Article  PubMed  CAS  Google Scholar 

  • Moeseneder MM, Arrieta JM, Muyzer G, Winter C, Herndl GJ (1999) Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Appl Environ Microbiol 65:3518–3525

    PubMed  CAS  Google Scholar 

  • Moussard H, L’Haridon S, Banta A, Reysenbach A-L, Schumann P, Stackebrandt E, Jeanthon C (2004) Thermodesulfator indiensis gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 54:227–233

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127–141

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Nakamura S, Inagaki F, Takai K, Shirai N, Sako Y (2004) Hydrogenivirga caldilitoris gen. nov., sp. nov., a novel extremely thermophilic, hydrogen- and sulfur-oxidizing bacterium from a coastal hydrothermal field. Int J Syst Evol Microbiol 54:2079–84

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Takai K, Inagaki F, Hirayama H, Nunoura T, Horikoshi K, Sako Y (2005a) Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field. Environ Microbiol 7:1619–1632

    Article  CAS  Google Scholar 

  • Nakagawa S, Takai K, Inagaki F, Chiba H, Ishibashi J, Kataoka S, Hirayama H, Nunoura T, Horikoshi K, Sako Y (2005b) Variability in microbial community and venting chemistry in a sediment-hosted backarc hydrothermal system: Impacts of subseafloor phase-separation. FEMS Microbiol Ecol 54:141–155

    Article  CAS  Google Scholar 

  • Nercessian O, Reysenbach A-L, Prieur D, Jeanthon C (2003) Archaeal diversity associated with in situ samplers deployed on hydrothermal vent on the East Pacific Rise (13N). Environ Microbiol 5:492–502

    Article  PubMed  Google Scholar 

  • Ohmoto H, Lasaga AC (1983) Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochim Cosmochim Acta 46:1727–1746

    Article  Google Scholar 

  • Page A, Juniper SK, Olagnon M, Alain K, Desrosiers G, Querellou J, Cambon-Bonavita M-A (2004) Microbial diversity associated with a Paralvinella sulfincola tube and the adjacent substratum on an active deep-sea vent chimney. Geobiology 2:225–238

    Article  Google Scholar 

  • Reysenbach A-L, Shock E (2002) Merging genomes with geochemistry at hydrothermal ecosystems. Science 296:1077–1082

    Article  PubMed  CAS  Google Scholar 

  • Reysenbach A-L, Longnecker K, Kirshtein J (2000) Novel bacterial and archaeal lineages from an in situ growth chanber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66:3798–3806

    Article  PubMed  CAS  Google Scholar 

  • Reysenbach A-L, Gotz D, Yernool D (2001) Microbial diversity of marine and terrestrial thermal springs. In: Staley, Reysenbach (eds) Microbial diversity of life. Wiley, NY, pp 345–421

  • Reysenbach A-L, Gotz D, Banta A, Jeanthon C, Fouquet Y (2002) Expanding the distribution of the Aquificales to the deep-sea vents on Mid-Atlantic Ridge and Central Indian Ridge. Cahiers Biologique Marin 43:425–428

    Google Scholar 

  • Schrenk MO, Kelley DS, Delaney JR, Baross JA (2003) Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl Environ Microbiol 69:3580–3592

    Article  PubMed  CAS  Google Scholar 

  • Seewald JS, Seyfried WE Jr, Shanks WC III (1994) Variations in the chemical and stable isotope composition of carbon and sulfur species during organic-rich sediment alteration: an experimental and theoretical study of hydrothermal activity at Guaymas Basin, Gulf of California. Geochim Cosmochim Acta 58:5065–5082

    Article  CAS  Google Scholar 

  • Seyfried WE Jr, Ding K (1993) The effect of redox on the relative solubilities of copper and iron in Cl-bearing aqueous fluids at elevated temperatures and pressures: an experimental study with application to subseafloor hydrothermal systems. Geochim Cosmochim Acta 57:1905–1917

    Article  CAS  Google Scholar 

  • Seyfried WE Jr, Ding K, Berndt ME, Chen X (1999) Experimental and theoretical controls on the composition of mid-ocean ridge hydrothermal fluids. In: Tucker BC, Hannington MD (eds) Experimental and theoretical controls on the composition of mid-ocean ridge hydrothermal fluids. Rev Econ Geol 8:181–200

  • Takai K, Fujiwara Y (2002) Hydrothermal vents: biodiversity in deep-sea hydrothermal vents. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 1604–1617

    Google Scholar 

  • Takai K, Horikoshi K (1999) Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152:1285–1297

    PubMed  CAS  Google Scholar 

  • Takai K, Komatsu T, Inagaki F, Horikoshi K (2001) Distribution of Archaea in a black smoker chimney structure. Appl Environ Microbiol 67:3618–3629

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Kobayashi H, Nealson KH, Horikoshi K (2003) Sulfurihydrogenibium subterraneum gen. nov., sp. nov., from a subsurface hot aquifer. Int J Syst Evol Microbiol 53:823–827

    Article  PubMed  CAS  Google Scholar 

  • Takai K, Nealson KH, Horikoshi K (2004a) Methanotorris formicicus sp. nov., a novel extremely thermophilic, methane-producing archaeon isolated from a black smoker chimney in the Central Indian Ridge. Int J Syst Evol Microbiol 54:1095–1100

    Article  CAS  Google Scholar 

  • Takai K, Gamo T, Tsunogai U, Nakayama N, Hirayama H, Nealson KH, Horikoshi K (2004b) Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles 8:269–282

    Article  CAS  Google Scholar 

  • Thornton EC, Seyfried WE Jr (1987) Reactivity of organic-rich sediment in seawater at 350°C, 500 bars: experimental and theoretical constraints and implications for the Guaymas Basin hydrothermal system. Geochim Cosmochim Acta 51:1997–2010

    Article  CAS  Google Scholar 

  • Van Dover CL (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, Princeton

    Google Scholar 

  • Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR (1998) Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65–7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was support by National Science Foundation grants to Anna-Louise Reysenbach (OCE-0083134 and OCE-0242038) and William Seyfried (OCE-0083151). The authors thank Karen Von Damm for inviting us on her research cruise to the East Pacific Rise (supported by OCE-0327126). Thanks also to the Alvin team and the crew of the RV Altantis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. E. Seyfried Jr or A.- L. Reysenbach.

Additional information

Communicated by F. Robb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houghton, J.L., Seyfried, W.E., Banta, A.B. et al. Continuous enrichment culturing of thermophiles under sulfate and nitrate-reducing conditions and at deep-sea hydrostatic pressures. Extremophiles 11, 371–382 (2007). https://doi.org/10.1007/s00792-006-0049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-006-0049-7

Keywords

Navigation