Skip to main content
Log in

A catalytic carbohydrate contributes to bacterial antibiotic resistance

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Penicillins are widespread in nature and lethal to growing bacteria. Because of the severe threat posed by these antibiotics, bacteria have evolved a wide variety of strategies for combating them. Here, we describe one unusual strategy that involves the activity of a catalytic carbohydrate. We show that the cyclic oligosaccharide, β-cyclodextrin (βCD), can hydrolyze, and thereby inactivate, penicillin in vivo. Moreover, we demonstrate that this catalytic activity contributes to the antibiotic resistance of a bacterium that synthesizes this oligosaccharide in the laboratory. Taken together, these data not only expand our understanding of the biochemistry of penicillin resistance, but also provide the first demonstration of natural carbohydrate-mediated catalysis in a living system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    PubMed  CAS  Google Scholar 

  • Bender ML, Komiyama M (1978) Cyclodextrin chemistry. Springer-Verlag, NY

    Google Scholar 

  • Bert F, Branger C, Lambert-Zechovsky N (2002) Identification of PSE and OXA beta-lactamase genes in Pseudomonas aeruginosa using PCR-restriction fragment length polymorphism. J Antimicrob Chemother 50:11–18

    Article  PubMed  CAS  Google Scholar 

  • Breslow R, Dong SD (1998) Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem Rev 98:1997–2011

    Article  PubMed  CAS  Google Scholar 

  • Breslow R, Huang DL (1991) Effects of metal ions, including Mg2+ and lanthanides, on the cleavage of ribonucleotides and RNA model compounds. Proc Natl Acad Sci USA 88:4080–4083

    Article  PubMed  CAS  Google Scholar 

  • Burkholder WF, Kurtser I, Grossman AD (2001) Replication initiation proteins regulate a developmental checkpoint in Bacillus subtilis. Cell 104:269–279

    Article  PubMed  CAS  Google Scholar 

  • Chen CC, Rahil J, Pratt RF, Herzberg O (1993) Structure of a phosphonate-inhibited beta-lactamase. An analog of the tetrahedral transition state/intermediate of beta-lactam hydrolysis. J Mol Biol 234:165–178

    Article  PubMed  CAS  Google Scholar 

  • Fiedler G, Pajatsch M, Bock A (1996) Genetics of a novel starch utilisation pathway present in Klebsiella oxytoca. J Mol Biol 256:279–291

    Article  PubMed  CAS  Google Scholar 

  • Hada S, Neya S, Funasaki N (1997) Acceleration and inhibition of the hydrolysis of penicillin G by dimerization and cyclodextrin inclusion. Chem Pharm Bull 45:577–583

    CAS  Google Scholar 

  • Helfand MS, Bethel CR, Hujer AM, Hujer KM, Anderson VE, Bonomo RA (2003) Understanding resistance to beta-lactams and beta-lactamase inhibitors in the SHV beta-lactamase: lessons from the mutagenesis of SER-130. J Biol Chem 278:52724–52729

    Article  PubMed  CAS  Google Scholar 

  • Holstege DM, Puschner B, Whitehead G, Galey FD (2002) Screening and mass spectral confirmation of beta-lactam antibiotic residues in milk using LC-MS/MS. J Agric Food Chem 50:406–411

    Article  PubMed  CAS  Google Scholar 

  • Horikoshi K (1991) Microorganisms in alkaline environments. Kodansha-VCH, Tokyo, Japan

    Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750

    PubMed  CAS  Google Scholar 

  • Ishida M, Kobayashi K, Awata N, Sakamoto F (1999) Simple high-performance liquid chromatography determination of ampicillin in human serum using solid-phase extraction disk cartridges. J Chromatogr B Biomed Sci Appl 727:245–248

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata S, Kamiya M (1999) Cyclodextrin inclusion: catalytic effects on the degradation of organophosphorus pesticides in neutral aqueous solution. Chemosphere 39:1595–1600

    Article  PubMed  CAS  Google Scholar 

  • Kato C, Nakano Y, Horikoshi K (1989) The nucleotide-sequence of the lipo-penicillinase gene of alkalophilic Bacillus sp. strain 170. Arch Microbiol 151:91–94

    Article  PubMed  CAS  Google Scholar 

  • Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31:147–157

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Seo D, Park H, Choi Y, Jung S (2003) Solubility enhancement of a hydrophobic flavonoid, luteolin by the complexation with cyclosophoraoses isolated from Rhizobium meliloti. Antonie Van Leeuwenhoek 84:201–207

    Article  PubMed  CAS  Google Scholar 

  • Livermore DM, Brown DFJ (2001) Detection of beta-lactamase-mediated resistance. J Antimicrob Chemother 48(Suppl 1):59–64

    PubMed  CAS  Google Scholar 

  • Mathews CK, van Holde KE (1990) Biochemistry. Benjamin/Cummings Publishing, Menlo Park, CA

    Google Scholar 

  • Nakamura N, Horikoshi K (1976a) Characterization and some culture conditions of a cyclodextrin glycosyltransferase-producing alkalophilic Bacillus sp. Agric Biol Chem 40:753–757

    CAS  Google Scholar 

  • Nakamura N, Horikoshi K (1976b) Characterization of acid-cyclodextrin glycosyl-transferase of an alkalophilic Bacillus sp. Agric Biol Chem 40:1647–1648

    CAS  Google Scholar 

  • Nakamura N, Horikoshi K (1976c) Purification and properties of cyclodextrin glycosyltransferase of an alkalophilic Bacillus sp. Agric Biol Chem 40:935–941

    CAS  Google Scholar 

  • Paloheimo M, Haglund D, Aho S, Korhola M (1992) Production of cyclomaltodextrin glucanotransferase of Bacillus circulans var. alkalophilus ATCC21783 in B. subtilis. Appl Microbiol Biotechnol 36:584–591

    Article  PubMed  CAS  Google Scholar 

  • Park CS, Park KH, Kim SH (1989) A rapid screening method for alkaline beta-cyclodextrin glucanotransferase using phenolphthalein-methyl orange-containing solid medium. Agric Biol Chem 53:1167–1169

    CAS  Google Scholar 

  • Salva TDG, de Lima VB, Pagan AP (1997) Screening alkalophilic bacteria for cyclodextrin glycosyltransferase production. Rev Microbiol 28:157–164

    Google Scholar 

  • Stahl E (1969) Thin layer chromatography. Springer-Verlag, New York

    Google Scholar 

  • Sumner JB (1926) The isolation and crystallization of the enzyme urease. Preliminary paper. J Biol Chem 69:435–441

    CAS  Google Scholar 

  • Spies MA, Schowen RL (2002) The trapping of a spontaneously flipped-out base from double helical nucleic acids by host-guest complexation with beta-cyclodextrin: the intrinsic base-flipping rate constant for DNA and RNA. J Am Chem Soc 124:14049–14053

    Article  PubMed  CAS  Google Scholar 

  • Szetjli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1753

    Article  Google Scholar 

  • Takai K, Moyer CL, Miyazaki M, Nogi Y, Hirayama H, Nealson KH, Horikoshi K (2005) Marinobacter alkaliphilus sp. nov., a novel alkaliphilic bacterium isolated from subseafloor alkaline serpentine mud from ocean drilling program site 1200 at South Chamorro Seamount, Mariana Forearc. Extremophiles 9:17–27

    Article  PubMed  CAS  Google Scholar 

  • Takaki Y, Matsuki A, Chee GJ, Takami H (2004) Identification and distribution of new insertion sequences in the genome of the extremely halotolerant and alkaliphilic Oceanobacillus iheyensis HTE831. DNA Res 11:233–245

    Article  PubMed  CAS  Google Scholar 

  • Tutt DE, Schwartz MA (1970) Specificity in the cycloheptaamylose-catalysed hydrolysis of penicillins. Chem Commun 1718:113–114

    Google Scholar 

  • Tutt DE, Schwartz MA (1971) Model catalysts which stimulate penicillinase. V. The cycloheptaamylose-catalyzed hydrolysis of penicillins. J Am Chem Soc 93:767–772

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Tanaka Y, Horikoshi K (1972) Alkaline amylases of alkalophilic bacteria. Agric Biol Chem 36:1819–1823

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Milton Gordon, Jim Staley, Marion Brodhagen, Robert Edmonds, and members of the Nester, Hakomori, and Gordon laboratories for their insightful comments and criticisms, and Drs. Carlos Semino and William J. Brown for stimulating discussions during the early stages of this work. Ms. Emily Lee and Mr. Adonis Acuario provided expert technical assistance. This work was supported by a National Science Foundation Small Grant for Exploratory Research (MCB-0135592) and a National Institutes of Health Research grant (GM 32618) to E. W. N., a National Institutes of Health/National Cancer Institute grant (R01-CA80054) to S. Hakomori that also provided support to T. H., and an American Cancer Society postdoctoral fellowship to P. dF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul de Figueiredo.

Additional information

Communicated by K. Horikoshi.

Paul de Figueiredo, Becky Terra and Jasbir Kaur Anand have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Figueiredo, P., Terra, B., Anand, J.K. et al. A catalytic carbohydrate contributes to bacterial antibiotic resistance. Extremophiles 11, 133–143 (2007). https://doi.org/10.1007/s00792-006-0024-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-006-0024-3

Keywords

Navigation