Skip to main content
Log in

Functional similarities of a thermostable protein-disulfide oxidoreductase identified in the archaeon Pyrococcus horikoshii to bacterial DsbA enzymes

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

We have isolated and characterized a gene for a putative protein-disulfide oxidoreductase (phdsb) in the archaeon Pyrococcus horikoshii. The open reading frame of phdsb encodes a protein of 170 amino acids with an NH2-terminal extension similar to the bacterial signal peptides. The putative mature region of PhDsb includes a sequence motif, Cys-Pro-His-Cys (CPHC), that is conserved in members of the bacterial DsbA family, but otherwise the archaeal and bacterial sequences do not show substantial similarity. A recombinant protein corresponding to the predicted mature form of PhDsb behaved as a monomer and manifested oxidoreductase activities in vitro similar to those of DsbA of Escherichia coli. The catalytic activity of PhDsb was thermostable and was shown by mutation analysis to depend on the NH2-terminal cysteine residue of the CPHC motif. Thus, in spite of their low overall sequence similarities, DsbA-like proteins of archaea and bacteria appear to be highly similar in terms of function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams MWW (1993) Enzymes and proteins from organisms that grow near and above 100°C. Annu Rev Microbiol 47:627–658

    PubMed  CAS  Google Scholar 

  • Bader M, Muse W, Ballou DP, Gassner C, Bardwell JCA (1999) Oxidative protein folding is driven by the electron transport system. Cell 98:217–227

    Article  PubMed  CAS  Google Scholar 

  • Bessette PH, Qiu J, Bardwell JCA, Swartz JR, Georgiou G (2001) Effect of sequence of the active-site dipeptides of DsbA and DsbC on in vivo folding of multidisulfide proteins in Escherichia coli. J Bacteriol 183:980–988

    Article  PubMed  CAS  Google Scholar 

  • Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NS, Venter JC (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073

    Article  PubMed  CAS  Google Scholar 

  • Charbonnier J-B, Belin P, Moutiez M, Stura EA, Quéméneur E (1999) On the role of the cis-proline residue in the active site of DsbA. Protein Sci 8:96–105

    PubMed  CAS  Google Scholar 

  • Frand AR, Kaiser CA (1998) The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol Cell 1:161–170

    Article  PubMed  CAS  Google Scholar 

  • Frand AR, Kaiser CA (1999) Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum. Mol Cell 4:469–477

    Article  PubMed  CAS  Google Scholar 

  • Freedman RB, Hirst TR, Tuite MF (1994) Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci 19:331–336

    Article  PubMed  CAS  Google Scholar 

  • Gane PJ, Freedman RB, Warwicker J (1995) A molecular model for the redox potential difference between thioredoxin and DsbA, based on electronics calculations. J Mol Biol 249:376–387

    Article  PubMed  CAS  Google Scholar 

  • Grauschopf U, Winter JR, Korber P, Zander T, Dallinger P, Bardwell JCA (1995) Why is DsbA such an oxidizing disulfide catalyst? Cell 83:947–955

    Article  PubMed  CAS  Google Scholar 

  • Guagliardi A, Nobile V, Bartolucci S, Rossi M (1994) A thioredoxin from the extreme thermophilic archaeon Sulfolobus solfataricus. Int J Biochem 26:375–380

    Article  CAS  Google Scholar 

  • Guagliardi A, de Pascale D, Cannio R, Nobile V, Bartolucci S, Rossi M (1995) The purification, cloning, and high level expression of a glutaredoxin-like protein from the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem 270:5748–5755 (Erratum: J Biol Chem 1997;272:20961)

    Google Scholar 

  • Guddat LW, Bardwell JCA, Zander T, Martin JL (1997) The uncharged surface features surrounding the active site of Escherichia coli DsbA are conserved and are implicated in peptide binding. Protein Sci 6:1148–1156

    Article  PubMed  CAS  Google Scholar 

  • Higuchi R, Krummel B, Saiki RK (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 16:7351–7367

    Article  PubMed  CAS  Google Scholar 

  • Holmgren A (1979) Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J Biol Chem 254:9627–9632

    PubMed  CAS  Google Scholar 

  • Horlacher R, Xavier KB, Santos H, Dıruggiero J, Koaamann M, Boos W (1998) Archaeal binding protein-dependent ABC transporter: molecular and biochemical analysis of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis. J Bacteriol 180:680–689

    PubMed  CAS  Google Scholar 

  • Jørgensen S, Vorgias CE, Antranikian G (1997) Cloning, sequencing, characterization, and expression of an extracellular α-amylase from the hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli and Bacillus subtilis. J Biol Chem 272:16335–16342

    Article  PubMed  Google Scholar 

  • Kadokura H, Beckwith J (2002) Four cysteines of the membrane protein DsbB act in concert to oxidize its substrate DsbA. EMBO J 21:2354–2363

    Article  PubMed  CAS  Google Scholar 

  • Kashima Y, Ishikawa KA (2003) Hyperthermostable novel protein-disulfide oxidoreductase is reduced by thioredoxin reductase from hyperthermophilic archaeon Pyrococcus horikoshii. Arch Biochem Biophys 418:179–185

    Article  PubMed  CAS  Google Scholar 

  • Kawarabayasi Y, Sawada M, Horikawa H, Haikawa Y, Hino Y, Yamamoto S, Sekine M, Baba S, Kosugi H, Hosoyama A, Nagai Y, Sakai M, Ogura K, Otsuka R, Nakazawa H, Takamiya M, Ohfuku Y, Funahashi T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki K, Kikuchi H (1998) Complete sequence and gene organization of the genome of a hyperthermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res 5:55–76

    Article  PubMed  CAS  Google Scholar 

  • Kawarabayasi Y, Hino Y, Horikawa H, Yamazaki S, Haikawa Y, Jin-no K, Takahashi M, Sekine M, Baba S, Ankai A, Kosugi H, Hosoyama A, Fukui S, Nagai Y, Nishijima K, Nakazawa H, Takamiya M, Masuda S, Funahashi T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Kikuchi H (1999) Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrun pernix K1. DNA Res 6:83–101, 145–152

    Google Scholar 

  • Kawarabayasi Y, Hino Y, Horikawa H, Jin-no K, Takahashi M, Sekine M, Baba S, Ankai A, Kosugi H, Hosoyama A, Fukui S, Nagai Y, Nishijima K, Otsuka R, Nakazawa H, Takamiya M, Kato Y, Yoshizawa T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki K, Masuda S, Yanagii M, Nishimura M, Yamagishi A, Oshima T, Kikuchi H (2001) Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7. DNA Res 8:123–140

    Article  PubMed  CAS  Google Scholar 

  • Klenk H-P, Clayton RA, Tomb J-F, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, Richardson DL, Kerlavage AR, Graham DE, Kyrpides NC, Fleischmann RD, Quackenbush J, Lee NH, Sutton GG, Gill S, Kirkness EF, Dougherty BA, McKenney K, Adams MD, Loftus B, Peterson S, Reich CI, McNeil LK, Badger JH, Glodek A, Zhou L, Overbeek R, Gocayne JD, Weidman JF, McDonald L, Utterback T, Cotton MD, Spriggs T, Artiach P, Kaine BP, Sykes SM, Sadow PW, D’Andrea KP, Bowman C, Fujii C, Garland SA, Mason TM, Olsen GJ, Fraser CM, Smith HO, Woese CR, Venter JC (1997) The complete genome sequence of the hyperthermophilic, sulfate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–370

    Article  PubMed  CAS  Google Scholar 

  • Lyles MM, Gilbert HF (1991) Catalysis of the oxidative folding of ribonuclease A by protein disulfide isomerase: dependence of the rate on the composition of the redox buffer. Biochemistry 30:613–619

    Article  PubMed  CAS  Google Scholar 

  • Madin K, Sawasaki T, Ogasawara T, Endo Y (2000) A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes. Proc Natl Acad Sci USA 97:559–564

    Article  PubMed  CAS  Google Scholar 

  • Martin JL, Bardwell JCA, Kuriyan J (1993) Crystal structure of DsbA protein required for disulphide bond formation in vivo. Nature 365:464–468

    Article  PubMed  CAS  Google Scholar 

  • McFarlan SC, Terrell CA, Hogenkamp HP (1992) The purification, characterization, and primary structure of a small redox protein from Methanobacterium thermoautotrophicum, an archaebacterium. J Biol Chem 267:10561–10569

    PubMed  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  PubMed  CAS  Google Scholar 

  • Nielsen H, Brunak S, von Heijne G (1999) Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng 12:3–9

    Article  PubMed  CAS  Google Scholar 

  • Nishide T, Nakamura Y, Emi M, Yamamoto T, Ogawa M, Mori T, Matsubara K (1986) Primary structure of human salivary α-amylase gene. Gene 41:299–304

    Article  PubMed  CAS  Google Scholar 

  • Ondo-Mbele E, Vivés C, Koné A, Serre L (2005) Intriguing conformation changes associated with the trans/cis isomerization of a prolyl residue in the active site of the DsbA C33A mutant. J Mol Biol 347:555–563

    Article  PubMed  CAS  Google Scholar 

  • Pedon E, Ren B, Ladenstein R, Rossi M, Bartolucci S (2004) Functional properties of the protein disulfide oxidoreductase from the archaeon Pyrococcus furiosus. Eur J Biochem 271:3437–3448

    Article  Google Scholar 

  • Pollard MG, Travers KJ, Weissman JS (1998) Ero1p: a novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol Cell 1:171–182

    Article  PubMed  CAS  Google Scholar 

  • Raina S, Missiakas D (1997) Making and breaking disulfide bonds. Annu Rev Microbiol 51:179–202

    Article  PubMed  CAS  Google Scholar 

  • Ren B, Tibbelin G, de Pascsale D, Rossi M, Tartolucci S, Ladenstein R (1998) A protein disulfide oxidoreductase from the archaeon Pyrococcus furiosus contains two thioredoxin fold units. Nat Struct Biol 5:602–611

    Article  PubMed  CAS  Google Scholar 

  • Ryabova LA, Desplancq D, Spirin AS, Pluckthun A (1997) Functional antibody production using cell-free translation: effects of protein disulfide isomerase and chaperones. Nat Biotechnol 15:79–84

    Article  PubMed  CAS  Google Scholar 

  • Sawasaki T, Hasegawa Y, Tsuchimochi M, Kamura N, Ogasawara T, Kuroita T, Endo Y (2002) A bilayer cell-free protein synthesis system for high-throughput screening of gene products. FEBS Lett 14:102–105

    Article  Google Scholar 

  • Tjalsma H, Bolhuis A, van Roosmalen ML, Wiefert T, Schumann W, Broekhuizen CP, Quax WJ, Venema G, Bron S, van Dijl JM (1998) Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a bacterial homolog of archaeal and eukaryotic signal peptidases. Genes Dev 12:2318–2331

    PubMed  CAS  Google Scholar 

  • Thorstenson YR, Zhang Y, Olson PS, Mascarenhas D (1997) Leaderless polypeptides efficiently extracted from whole cells by osmotic shock. J Bacteriol 179:5333–5339

    PubMed  CAS  Google Scholar 

  • Urban A, Leipelt M, Eggert T, Jaeger K (2001) DsbA and DsbC affect extracellular enzyme formation in Pseudomonas aeruginosa. J Bacteriol 183:587–596

    Article  PubMed  CAS  Google Scholar 

  • Wunderlich M, Otto A, Maskos K, Mücke M, Seckler R, Glockshuber R (1995) Efficient catalysis of disulfide formation during protein folding with a single active-site cysteine. J Mol Biol 247:28–33

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Y. Kawamura for helpful discussions, as well as E. Isono, M. Yamaguchi, and A. Tamai for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzuru Tozawa.

Additional information

Communicated by K. Horikoshi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuroita, T., Kanno, T., Kawai, A. et al. Functional similarities of a thermostable protein-disulfide oxidoreductase identified in the archaeon Pyrococcus horikoshii to bacterial DsbA enzymes. Extremophiles 11, 85–94 (2007). https://doi.org/10.1007/s00792-006-0015-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-006-0015-4

Keywords

Navigation