Skip to main content
Log in

HMG-CoA reductase is regulated by salinity at the level of transcription in Haloferax volcanii

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The moderately halophilic archaeon Haloferax volcanii was surveyed for protein profile changes correlated with growth at high and low salinity. A single polypeptide with an approximate mass of 46 kDa was conspicuously more abundant during growth at high salinity. This protein was identified as HMG-CoA reductase (HMGR), encoded by the hmgR gene. HMGR is a key enzyme in the mevalonate pathway of isoprenoid biosynthesis, the sole route in haloarchaea for lipid and carotenoid production. Enzymatic assays confirmed that HMGR activity is more abundant in cells grown at high salinity. Low salt cultures of H. volcanii contained lower amounts of hmgR transcript compared to cells grown in high salt suggesting that the observed regulation occurs at the level of transcription. Paradoxically, both lipid and carotenoid content decreased in H. volcanii grown at high salinity despite the increased levels of HMGR specific activity. To our knowledge, this is the first report demonstrating that the expression of HMGR is regulated in response to non-optimal salinity in a halophilic archaeon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bidle KA (2003) Differential expression of genes influenced by changing salinity using RNA arbitrarily primed PCR in the archaeal halophile, Haloferax volcanii. Extremophiles 7:1–7

    PubMed  CAS  Google Scholar 

  • Bischoff KM, Rodwell VW (1996) 3-Hydroxy-3-methylglutaryl-coenzyme A reductase from Haloferax volcanii: purification, characterization, and expression in Escherichia coli. J Bacteriol 178:19–23

    PubMed  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  • Charlebois RL, Lam WL, Cline SW, Doolittle WF (1987) Characterization of pHV2 from Halobacterium volcanii and its use in demonstrating transformation of an archaebacterium. Proc Natl Acad Sci USA 84:8530–8534

    Article  PubMed  CAS  Google Scholar 

  • Daniels CJ, McKee AHZ, Doolittle WF (1984) Archaebacterial heat-shock proteins. EMBO J 3:745–749

    PubMed  CAS  Google Scholar 

  • Ferrer C, Mojica FJM, Juez G, Rodriguez-Valera F (1996) Differentially transcribed regions of Haloferax volcanii genome depending on the medium salinity. J Bacteriol 178:309–313

    PubMed  CAS  Google Scholar 

  • Grant WD (2004) Life at low water activity. Phil Trans R Soc Lond B Biol Sci 359:1249–1267

    Article  CAS  Google Scholar 

  • Kamekura M (1993) Lipids of extreme halophiles. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC, Boca Raton. pp 135–161

    Google Scholar 

  • Kates M (1996) Structural analysis of phospholipids and glycolipids in extremely halophilic archaebacteria. J Microbiol Meth 25:113–128

    Article  CAS  Google Scholar 

  • Kates M, Kushwaha SC (1995) Isoprenoids and polar lipids of extreme halophiles. In: Robb FT, Place AR, Sowers KR, Schreier HJ, DasSarma S, Fleischmann EM (eds) Archaea: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor. pp 35–54

    Google Scholar 

  • Kates M, Moldoveanu N (1991) Polar lipid structure, composition and biosynthesis in extremely halophilic bacteria. In: Rodriguez-Valera F (ed) General and applied aspects of halophilic microorganisms. Plenum, New York pp 191–198

    Google Scholar 

  • Konings WN, Albers S-V, Koning S, Driessen AJM (2002) The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie van Leeuwenhoek 81:61–72

    Article  PubMed  CAS  Google Scholar 

  • Kundu SK, Chakravarty S, Bhaduri N, Saha HK (1977) A novel spray reagent for phospholipid detection. J Lipid Res 18:128–130

    PubMed  CAS  Google Scholar 

  • Kuo Y-P, Thompson DK, St. Jean A, Charlebois RL, Daniels CJ (1997) Characterization of two heat shock genes from Haloferax volcanii: a model system for transcription regulation in the Archaea. J Bacteriol 179:6318–6324

    PubMed  CAS  Google Scholar 

  • Kushwaha SC, Juez-Perez G, Rodriguez-Valera F, Kates M, Kushner DJ (1982) Survey of lipids of a new group of extremely halophilic bacteria from salt ponds in Spain. Can J Microbiol 28:1365–1372

    Article  CAS  Google Scholar 

  • Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci USA 97:13172–13177

    Article  PubMed  CAS  Google Scholar 

  • Link AJ et al. (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17:676–682

    Article  PubMed  CAS  Google Scholar 

  • Mojica FJM, Cisneros E, Ferrer C, Rodriguez-Valera F, Juez G (1997) Osmotically induced response in representatives of halophilic prokaryotes: the bacterium Halomonas elongata and the archeon Haloferax volcanii. J Bacteriol 179:5471–5481

    PubMed  CAS  Google Scholar 

  • Mullakhanbhai MF, Larsen H (1975) Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement. Arch Microbiol 104:207–214

    Article  PubMed  CAS  Google Scholar 

  • Oren A (2000) Life at high salt concentrations. In: Dworkin M (ed) The prokaryotes online. Springer, Berlin Heidelberg New York

  • Petrovic U, Gunde-Cimerman N, Plemenitas A (1999) Salt stress affects sterol biosynthesis in the halophilic black yeast Hortaea werneckii. FEMS Microbiol Lett 180:325–330

    Article  PubMed  CAS  Google Scholar 

  • Qin D-F, Games MPL, Xiao X-Y, Games DE, Walton TJ (1998) Application of high-performance liquid chromatography/elctrospray mass spectrometry for the characterization of membrane lipids in the haloalkaliphilic archaebacterium Natronobacterium magadii. Rapid Commun Mass Spectrom 12:939–946

    Article  Google Scholar 

  • Qin D-F, Games MPL, Xiao X-Y, Games DE, Walton TJ (2000) Characterisation of membrane phospholipids and glycolipids from a halophilic archaebacterium by high-performance liquid chromatography/electrospray mass spectrometry. Rapid Commun Mass Spectrom 14:1586–1591

    Google Scholar 

  • Robb FT, Place AR, Sowers KR, Schreier HJ, DasSarma S, Fleischmann EM (1995) Archaea: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sprott GD, Larocque S, Cadotte N, Dicaire CJ, McGee M, Brisson JR (2003) Novel polar lipids of halophilic eubacterium Planococcus H8 and archaeon Haloferax volcanii. Biochim Biophys Acta 1633:179–188

    PubMed  CAS  Google Scholar 

  • Tachibana A, Tanaka T, Taniguchi M, Oi S (1996) Evidence for farnesol-mediated isoprenoid synthesis regulation in a halophilic archaeon, Haloferax volcanii. FEBS Lett 379:43–46

    Article  PubMed  CAS  Google Scholar 

  • Thompson DK, Daniels CJ (1998) Heat shock inducibility of an archaeal TATA-like promoter is controlled by adjacent sequence elements. Mol Microbiol 27:541–551

    Article  PubMed  CAS  Google Scholar 

  • Thompson DK, Palmer JR, Daniels CJ (1999) Expression and heat-responsive regulation of a TFIIB homologue from the archaeon Haloferax volcanii. Mol Microbiol 33:1081–1092

    Article  PubMed  CAS  Google Scholar 

  • van de Vossenberg JL, Driessen AJ, Konings WN (1998) The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles 2:163–170

    Article  PubMed  Google Scholar 

  • Washburn MP, Wolters D, Yates JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant MCB02-34137 to K. B. from the National Science Foundation. Saw Kyin at the Princeton University Synthesis/Sequencing Core Facility is thanked for performing protein sequence analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly A. Bidle.

Additional information

Communicated by F. Robb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bidle, K.A., Hanson, T.E., Howell, K. et al. HMG-CoA reductase is regulated by salinity at the level of transcription in Haloferax volcanii . Extremophiles 11, 49–55 (2007). https://doi.org/10.1007/s00792-006-0008-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-006-0008-3

Keywords

Navigation