, Volume 11, Issue 1, pp 1–7 | Cite as

Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction

  • Daria G. Zavarzina
  • Tatyana G. Sokolova
  • Tatyana P. Tourova
  • Nikolai A. Chernyh
  • Nadezhda A. Kostrikina
  • Elizaveta A. Bonch-Osmolovskaya


A moderately thermophilic, sporeforming bacterium able to reduce amorphous Fe(III)-hydroxide was isolated from ferric deposits of a terrestrial hydrothermal spring, Kunashir Island (Kurils), and designated as strain Z-0001. Cells of strain Z-0001 were straight, Gram-positive rods, slowly motile. Strain Z-0001 was found to be an obligate anaerobe. It grew in the temperature range from 45 to 70°C with an optimum at 57–60°C, in a pH range from 5.9 to 8.0 with an optimum at 7.0–7.2, and in NaCl concentration range 0–3.5% with an optimum at 0%. Molecular hydrogen, acetate, peptone, yeast and beef extracts, glycogen, glycolate, pyruvate, betaine, choline, N-acetyl-d-glucosamine and casamino acids were used as energy substrates for growth in presence of Fe(III) as an electron acceptor. Sugars did not support growth. Magnetite, Mn(IV) and anthraquinone-2,6-disulfonate served as the alternative electron acceptors, supporting the growth of isolate Z-0001 with acetate as electron donor. Formation of magnetite was observed when amorphous Fe(III) hydroxide was used as electron acceptor. Yeast extract, if added, stimulated growth, but was not required. Isolate Z-0001 was able to grow chemolithoautotrophicaly with molecular hydrogen as the only energy substrate, Fe(III) as electron acceptor and CO2 as the carbon source. Isolate Z-0001 was able to grow with 100% CO as the sole energy source, producing H2 and CO2, requiring the presence of 0.2 g l−1 of acetate as the carbon source. The G+C content of strain Z-0001T DNA G+C was 47.8 mol%. Based on 16S rRNA sequence analyses strain Z-0001 fell into the cluster of family Peptococcaceae, within the low G+C content Gram-Positive bacteria, clustering with Thermincola carboxydophila (98% similarity). DNA–DNA hybridization with T. carboxydophila was 27%. On the basis of physiological and phylogenetic data it is proposed that strain Z-0001T (=DSMZ 14005, VKM B-2307) should be placed in the genus Thermincola as a new species Thermincola ferriacetica sp. nov.


Fe(III)-reduction Acetate-oxidation CO-oxidation Thermophile Magnetite formation 



We are grateful to A.M. Lysenko for determination of the DNA–DNA hybridization and to N.I Chystyakova for mössbauer analyze of mineral phase. This work was supported by “Biodiversity” Program of RAS, Research program of Presidium PAS “Molecular and Cellular Biology” and “Evolution of Biosphere”, «Russian Science Support Foundation» and in phylogenetic part by grants 05-04-48058 from Russian Foundation for Basic Research.


  1. Boone DR, Liu Y, Zhao ZJ, Balkwill DL, Drake GR, Stevens TO, Aldrich HC (1995) Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacteriol 45:441–448PubMedGoogle Scholar
  2. Chistyakova NI, Rusakov VS, Zavarzina DG (2002) Mössbauer investigation of biologically-induced mineralization processes. Hyp Int C 5:397–400Google Scholar
  3. Gavrilov SN, Bonch-Osmolovskaya EA, Slobodkin AI (2003) Physiology of organotrophic and chemolithoautotrophic growth of the thermophilic iron-reducing bacteria Thermoterrabacterium ferrireducens and Thermoanaerobacter siderophilus. Microbiology (English translation of Mikrobiologiya) 72:132–137Google Scholar
  4. Greene AC, Patel BKC, Sheehy AJ (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509PubMedGoogle Scholar
  5. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–132Google Scholar
  6. Kashefi K, Holmes DE, Reysenbach AL, Lovley DR (2002) Use of Fe(III) as an electron acceptor to recover previously uncultured hypertermophiles: isolation and characterisation of Geothermobacterium ferrireducens gen. nov., sp. nov. Appl Environ Microbiol 68:1735–1742PubMedCrossRefGoogle Scholar
  7. Kashefi K, Tor JM, Holmes DE, Baross JA, Lovley DR (2003) Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the “Bag City” Hydrothermal Vent. Appl Environ Microbiol 69:2985–2993PubMedCrossRefGoogle Scholar
  8. Kevbrin VV, Zavarzin GA (1992) The effect of sulfur compounds on growth of halophilic the homoacetic bacterium Acetohalobium arabaticum. Microbiology(English translation of Mikrobiologiya) 61:812–817Google Scholar
  9. Marmur J (1961) A procedure for the isolation of dioxyribonucleic acid from microorganosms. J Mol Biol 3:208–218CrossRefGoogle Scholar
  10. Miroshnichenko ML, Slibidkin AI, Kostrikina NA, L’Haridon S, Nercessian O, Spring S, Stackebrandt E, Bonch-Osmolovskaya EA, Jeanthon C (2003) Defferibacter abyssi sp.nov.—a new anaerobic thermophilic bacterium from deep-sea hydrothermal vents of Mid-Atlantic Ridge. Int J Syst Evol Microbiol 53:1637–1641PubMedCrossRefGoogle Scholar
  11. Owen RJ, Hill LR, Lapage SP (1969) Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers 7:503–516PubMedCrossRefGoogle Scholar
  12. Roh Y, Liu SV, Li G, Huang H, Phelps TJ, Zhou J (2002) Isolation and Characterization of Metal-Reducing Thermoanaerobacter Strains from Deep Subsurface Environments of the Piceance Basin, Colorado. Appl Environ Microbiol 68:6013–6020PubMedCrossRefGoogle Scholar
  13. Slobodkin AI, Eroshchev-Shak VA, Kostrikina NA, Lavrushin VY, Dainyak LG, Zavarzin GA (1995) Magnetite formation by thermophilic anaerobic microorganisms. Dokl Akad Nauk (in Russian) 345:694–697Google Scholar
  14. Slobodkin AI, Reysenbach A-L, Strutz N, Dreier M, Wiegel J (1997) Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring.Int J Syst Bacteriol 47:541–547PubMedCrossRefGoogle Scholar
  15. Sokolova TG, Kostrikina NA, Chernyh NA, Tourova TP, Kolganova TV, Bonch-Osmolovskaya EA (2002) Carboxydocella thermoautotrophica gen. nov., sp. nov., a novel anaerobic CO-utilizing thermophile from a Kamchatkan hot spring. Int J System Evol Microbiol 52:1961–1967CrossRefGoogle Scholar
  16. Sokolova TG, Jeanthon C, Kostrikina NA, Chernyh NA, Lebedinsky AV, Stckebrandt E, Bonch-Osmolovskaya EA (2004a) The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from deep-sea hydrothermal vents. Extremophiles 8:317–323CrossRefGoogle Scholar
  17. Sokolova TG, Gonzalez JM, Kostrikina NA, Chernyh NA, Slepova TV, Bonch-Osmolovskaya EA, Robb FT (2004b) Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic thermophilic carbon monoxide oxidizing hydrogenogenic bacterium from a hot pool of Yellowstone National Park. Int J System Evol Microbiol 54:2353–2359CrossRefGoogle Scholar
  18. Sokolova TG, Kostrikina NA, Chernyh NA, Kolganova TV, Tourova TP, Bonch-Osmolovskaya EA (2005) Thermincola carboxydophila gen.nov., sp.nov., a new anaerobic carboxydotrophic hydrogenogenic bacterium from a hot spring of Lake Baikal area. Int J System Evol Microbiol 55:2069–2073CrossRefGoogle Scholar
  19. Svetlitchnyi V, Peschel C, Acker G, Meyer O (2001) Two membrane-associated NiFeS-Carbon monoxide dehydrogenases from anaerobic carbon-monoxide-utilizing Eubacterium Carboxydothermus hydrogenoformans. J Bacteriol 183:5134–5144PubMedCrossRefGoogle Scholar
  20. Tor JM, Lovley DR (2001) Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus. Environ Microbiol 3:281–287PubMedCrossRefGoogle Scholar
  21. Takai K, Kobayashi H, Nealson KH, Horikoshi K (2003) Deferribacter desulfuricans sp.nov., a novel sulfur-, nitrate- and arsenate-reducing thermophile isolated from a deep-sea hydrothermal vent. Int J System Evol Microbiol 53:839–846CrossRefGoogle Scholar
  22. Van de Peer Y, De Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570PubMedGoogle Scholar
  23. Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR (1998) Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65–67PubMedCrossRefGoogle Scholar
  24. Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886PubMedGoogle Scholar
  25. Zavarzina DG (2004) Formation of magnetite and siderite by thermophilic Fe(III)-reducing bacteria. Paleontol J (English translation) 38:585–589Google Scholar
  26. Zavarzina DG, Zhilina TN, Tourova TP, Kuznetsov BB, Kostrikina NA, Bonch- Osmolovskaya EA (2000) Thermanaerovibrio velox gen. nov., sp. nov., a new anaerobic, thermophilic, organotrophic bacterium that reduces elemental sulfur, and emended description of the genus Thermanaerovibrio. Int J System Evol Microbiol 50:1287–1295Google Scholar
  27. Zavarzina DG, Tourova TP, Kuznetsov BB, Bonch-Osmolovskaya Slobodkin AI (2002) Thermovenabulum ferriorganovorum gen. nov., sp. nov., a novel thermophilic, anaerobic, endospore-forming bacterium. Int J System Evol Microbiol 52:1737–1743CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Daria G. Zavarzina
    • 1
  • Tatyana G. Sokolova
    • 1
  • Tatyana P. Tourova
    • 2
  • Nikolai A. Chernyh
    • 1
  • Nadezhda A. Kostrikina
    • 1
  • Elizaveta A. Bonch-Osmolovskaya
    • 1
  1. 1.Winogradsky Institute of MicrobiologyRussian Academy of Sciences MoscowRussia
  2. 2.Center “Bioengineering” Russian Academy of SciencesMoscowRussia

Personalised recommendations