Skip to main content

Advertisement

Log in

Genome-wide expression analysis of yeast response during exposure to 4°C

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Adaptation to temperature fluctuation is essential for the survival of all living organisms. Although extensive research has been done on heat and cold shock responses, there have been no reports on global responses to cold shock below 10°C or near-freezing. We examined the genome-wide expression in Saccharomyces cerevisiae, following exposure to 4°C. Hierarchical cluster analysis showed that the gene expression profile following 4°C exposure from 6 to 48 h was different from that at continuous 4°C culture. Under 4°C exposure, the genes involved in trehalose and glycogen synthesis were induced, suggesting that biosynthesis and accumulation of those reserve carbohydrates might be necessary for cold tolerance and energy preservation. The observed increased expression of phospholipids, mannoproteins, and cold shock proteins (e.g., TIP1) is consistent with membrane maintenance and increased permeability of the cell wall at 4°C. The induction of heat shock proteins and glutathione at 4°C may be required for revitalization of enzyme activity, and for detoxification of active oxygen species, respectively. The genes with these functions may provide the ability of cold tolerance and adaptation to yeast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramova N, Sertil O, Mehta S, Lowry CV (2001). Reciprocal regulation of anaerobic and aerobic cell wall mannoprotein gene expression in Saccharomyces cerevisiae. J Bacteriol 183:2881–2887

    Article  PubMed  Google Scholar 

  • Aguilar PS, Lopez P, de Mendoza D (1999) Transcriptional control of the low-temperature-inducible des gene, encoding the delta5 desaturase of Bacillus subtilis. J Bacteriol 181:7028–7033

    PubMed  Google Scholar 

  • Avery AM, Avery SV (2001) Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J Biol Chem 276:33730–33735

    Article  PubMed  Google Scholar 

  • Bell W, Sun W, Hohmann S, Wera S, Reinders A, De Virgilio C, Wiemken A, Thevelein JM (1998) Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J Biol Chem 273:33311–33319

    Article  PubMed  Google Scholar 

  • Carman GM, Zeimetz GM (1996) Regulation of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. J Biol Chem 271:13293–13296

    Article  PubMed  Google Scholar 

  • Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337

    PubMed  Google Scholar 

  • Choi JH, Lou W, Vancura A (1998) A novel membrane-bound glutathione S-transferase functions in the stationary phase of the yeast Saccharomyces cerevisiae. J Biol Chem 273:29915–29922

    Article  PubMed  Google Scholar 

  • Collinson EJ, Grant CM (2003) Role of yeast glutaredoxins as glutathione S-transferases. J Biol Chem 278:22492–22497 (Epub 2003 April 8)

    Article  PubMed  Google Scholar 

  • Delneri D, Gardner DC, Oliver SG (1999) Analysis of the seven-member AAD gene set demonstrates that genetic redundancy in yeast may be more apparent than real. Genetics 153:1591–1600

    PubMed  Google Scholar 

  • Fang L, Hou Y, Inouye M (1998) Role of the cold-box region in the 5′ untranslated region of the cspA mRNA in its transient expression at low temperature in Escherichia coli. J Bacteriol 180:90–95

    PubMed  Google Scholar 

  • Francois J, Parrou JL (2001) Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 25:125–145

    Article  PubMed  Google Scholar 

  • Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H (2004) Comprehensive gene expression analysis of the response to straight-chain alcohols in Saccharomyces cerevisiae using cDNA microarray. J Appl Microbiol 97:57–67

    Article  PubMed  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    PubMed  Google Scholar 

  • Godon C, Lagniel G, Lee J, Buhler JM, Kieffer S, Perrot M, Boucherie H, Toledano MB, Labarre J (1998) The H2O2 stimulon in Saccharomyces cerevisiae. J Biol Chem 273:22480–22489

    Article  PubMed  Google Scholar 

  • Guy C (1999) Molecular responses of plants to cold shock and cold acclimation. J Mol Microbiol Biotechnol 1:231–242

    PubMed  Google Scholar 

  • Homma T, Iwahashi H, Komatsu Y (2003) Yeast gene expression during growth at low temperature. Cryobiology 46:230–237

    Article  PubMed  Google Scholar 

  • Inaba M, Suzuki I, Szalontai B, Kanesaki Y, Los DA, Hayashi H, Murata N (2003) Gene-engineered rigidification of membrane lipids enhances the cold inducibility of gene expression in Synechocystis. J Biol Chem 278:12191–12198

    Article  PubMed  Google Scholar 

  • Iwahashi H, Nwaka S, Obuchi K, Komatsu Y (1998) Evidence for the interplay between trehalose metabolism and Hsp104 in yeast. Appl Environ Microbiol 64:4614–4617

    PubMed  Google Scholar 

  • Iwahashi H, Nwaka S, Obuchi K (2000) Evidence for contribution of neutral trehalase in barotolerance of Saccharomyces cerevisiae. Appl Environ Microbiol 66:5182–5185

    Article  PubMed  Google Scholar 

  • Jones PG, Inouye M (1996) RbfA, a 30S ribosomal binding factor, is a cold-shock protein whose absence triggers the cold-shock response. Mol Microbiol 21:1207–1218

    Article  PubMed  Google Scholar 

  • Kandror O, Goldberg AL (1997) Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc Natl Acad Sci USA 94:4978–4981

    Article  PubMed  Google Scholar 

  • Kandror O, DeLeon A, Goldberg AL (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci USA 99:9727–9732 (Epub 2002 July 8)

    Article  PubMed  Google Scholar 

  • Kandror O, Bretschneider N, Kreydin E, Cavalieri D, Goldberg AL (2004). Yeast adapt to near-freezing temperatures by STRE/Msn2,4-dependent induction of trehalose synthesis and certain molecular chaperones. Mol Cell 13:771–781

    Article  PubMed  Google Scholar 

  • Kitagawa E, Takahashi J, Momose Y, Iwahashi H (2002) Effects of the pesticide thiuram: genome-wide screening of indicator genes by yeast DNA microarray. Environ Sci Technol 36:3908–3915

    Article  PubMed  Google Scholar 

  • Kondo K, Inouye M (1991) TIP 1, a cold shock-inducible gene of Saccharomyces cerevisiae. J Biol Chem 266:17537–17544

    PubMed  Google Scholar 

  • Kondo K, Inouye M (1992) Yeast NSR1 protein that has structural similarity to mammalian nucleolin is involved in pre-rRNA processing. J Biol Chem 267:16252–16258

    PubMed  Google Scholar 

  • Kowalski LR, Kondo K, Inouye M (1995) Cold-shock induction of a family of TIP1-related proteins associated with the membrane in Saccharomyces cerevisiae. Mol Microbiol 15:341–353

    PubMed  Google Scholar 

  • Lashkari DA, DeRisi JL, McCusker JH, Namath AF, Gentile C, Hwang SY, Brown PO, Davis RW (1997) Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc Natl Acad Sci USA 94:13057–13062

    Article  PubMed  Google Scholar 

  • Lillie SH, Pringle JR (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol 143:1384–1394

    PubMed  Google Scholar 

  • Mizukami S, Suzuki Y, Kitagawa E, Iwahashi H (2004) Standardization of cDNA microarray technology for toxicogenomics; essential data for initiating cDNA microarray studies. Chem BioInformatics J 4:38–55

    Article  Google Scholar 

  • Moskovitz J, Berlett BS, Poston JM, Stadtman ER (1997) The yeast peptide–methionine sulfoxide reductase functions as an antioxidant in vivo. Proc Natl Acad Sci USA 94:9585–9589

    Article  PubMed  Google Scholar 

  • Mountain HA, Bystrom AS, Larsen JT, Korch C (1991) Four major transcriptional responses in the methionine/threonine biosynthetic pathway of Saccharomyces cerevisiae. Yeast 7:781–803

    Article  PubMed  Google Scholar 

  • Murata Y, Momose Y, Hasegawa M, Iwahasi H, Komatsu Y (2002) Cluster analysis and display of genome-wide expression profiles in dimethyl sulfoxide treatment. Chem BioInformatics J 2:18–31

    Article  Google Scholar 

  • Murata Y, Watanabe T, Sato M, Momose Y, Nakahara T, Oka S, Iwahashi H (2003) Dimethyl sulfoxide exposure facilitates phospholipid biosynthesis and cellular membrane proliferation in yeast cells. J Biol Chem 278:33185–33193 (Epub 2003 May 27)

    Article  PubMed  Google Scholar 

  • Nakagawa Y, Sugioka S, Kaneko Y, Harashima S (2001) O2R, a novel regulatory element mediating Rox1p-independent O(2) and unsaturated fatty acid repression of OLE1 in Saccharomyces cerevisiae. J Bacteriol 183:745–751

    Article  PubMed  Google Scholar 

  • Nakagawa Y, Sakumoto N, Kaneko Y, Harashima S (2002) Mga2p is a putative sensor for low temperature and oxygen to induce OLE1 transcription in Saccharomyces cerevisiae. Biochem Biophys Res Commun 291:707–713

    Article  PubMed  Google Scholar 

  • Odani M, Komatsu Y, Oka S, Iwahashi H (2003) Screening of genes that respond to cryopreservation stress using yeast DNA microarray. Cryobiology 47:155–164

    Article  PubMed  Google Scholar 

  • Parrou JL, Teste MA, Francois J (1997) Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 143:1891–1900

    PubMed  Google Scholar 

  • Pedrajas JR, Kosmidou E, Miranda-Vizuete A, Gustafsson JA, Wright AP, Spyrou G (1999) Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae. J Biol Chem 274:6366–6373

    Article  PubMed  Google Scholar 

  • Phadtare S, Inouye M, Severinov K (2004) The mechanism of nucleic acid melting by a CspA family protein. J Mol Biol 337:147–155

    Article  PubMed  Google Scholar 

  • Rachidi N, Martinez MJ, Barre P, Blondin B (2000) Saccharomyces cerevisiae PAU genes are induced by anaerobiosis. Mol Microbiol 35:1421–1430

    Article  PubMed  Google Scholar 

  • Sahara T, Goda T, Ohgiya S (2002) Comprehensive expression analysis of time-dependent genetic responses in yeast cells to low temperature. J Biol Chem 277:50015–50021

    Article  PubMed  Google Scholar 

  • Singer MA, Lindquist S (1998) Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol 16:460–468

    Article  PubMed  Google Scholar 

  • Stolc V, Katz A, Altman S (1998) Rpp2, an essential protein subunit of nuclear RNase P, is required for processing of precursor tRNAs and 35S precursor rRNA in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 95:6716–6721

    Article  PubMed  Google Scholar 

  • Suzuki I, Kanesaki Y, Mikami K, Kanehisa M, Murata N (2001) Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol Microbiol 40:235–244

    Article  PubMed  Google Scholar 

  • Thieringer HA, Jones PG, Inouye M (1998) Cold shock and adaptation. Bioessays 20:49–57

    Article  PubMed  Google Scholar 

  • Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532

    PubMed  Google Scholar 

  • Thomas D, Becker A, Surdin-Kerjan Y (2000) Reverse methionine biosynthesis from S-adenosylmethionine in eukaryotic cells. J Biol Chem 275:40718–40724

    Article  PubMed  Google Scholar 

  • Varela JC, Praekelt UM, Meacock PA, Planta RJ, Mager WH (1995) The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol Cell Biol 15:6232–6245

    PubMed  Google Scholar 

  • Zarka DG, Vogel JT, Cook D, Thomashow MF (2003) Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol 133:910–918 (Epub 2003 September 18)

    Article  PubMed  Google Scholar 

  • Zlotnik H, Fernandez MP, Bowers B, Cabib E (1984) Saccharomyces cerevisiae mannoproteins form an external cell wall layer that determines wall porosity. J Bacteriol 159:1018–1026

    PubMed  Google Scholar 

Download references

Acknowledgement

We are grateful to Dr. R. Rakwal for proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Iwahashi.

Additional information

Communicated by K. Horikoshi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murata, Y., Homma, T., Kitagawa, E. et al. Genome-wide expression analysis of yeast response during exposure to 4°C. Extremophiles 10, 117–128 (2006). https://doi.org/10.1007/s00792-005-0480-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-005-0480-1

Keywords

Navigation