Skip to main content
Log in

Gene replacement of adenylate kinase in the gram-positive thermophile Geobacillus stearothermophilus disrupts adenine nucleotide homeostasis and reduces cell viability

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Thermophilic bacteria are of great value for industry and research communities. Unfortunately, the cellular processes and mechanisms of these organisms remain largely understudied. In the present study, we investigate how the inactivation of adenylate kinase (AK) affects the adenine nucleotide homeostasis of a gram-positive moderate thermophile, Geobacillus stearothermophilus strain NUB3621-R. AK plays a major role in the adenine nucleotide homeostasis of living cells and has been shown to be essential for the gram-negative mesophile Escherichia coli. To study the role of AK in the maintenance of adenylate energy charge (EC) and cell viability of G. stearothermophilus, we generated a recombinant strain of this organism in which its endogenous gene coding for the essential protein adenylate kinase (AK) has been replaced with the adk gene from the mesophile Bacillus subtilis. PCR, DNA sequencing and Southern analysis were performed to confirm proper gene replacement and preservation of neighboring genes. The highest growing temperature for recombinant cells was almost 20°C lower than for wild-type cells (56 vs. 75°C). This temperature-sensitive phenotype was secondary to heat inactivation of B. subtilis AK, as evidenced by enzyme activity assays and EC measurements. At higher temperatures (65°C), recombinant cells also had lower EC values (0.09) compared to wild-type cells (0.45), which reflects a disruption of adenine nucleotide homeostasis following AK inactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

adk :

Adenylate kinase gene

AK:

Adenylate kinase protein

Ap5A:

P1, P5 -Di(adenosine-5′)pentaphosphate

cat :

Chloramphenicol acetyl-transferase gene

EC:

Energy charge

infA :

Initiation factor IF-I gene

secY:

Pre-protein translocase secY subunit gene

map :

Methionine aminopeptidase gene

RBS:

Ribosomal binding site

References

  • Atkinson DE (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7:4030–4034

    CAS  PubMed  Google Scholar 

  • Barzu O, Michelson S (1983) Simple and fast purification of Escherichia coli adenylate kinase. FEBS Lett 153:280–284

    Article  CAS  PubMed  Google Scholar 

  • Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474

    Article  CAS  PubMed  Google Scholar 

  • Breitling R, Schlott B, Behnke D (1994) Modulation of the spc operon affects growth and protein secretion in Bacillus subtilis. J Basic Microbiol 34:145–155

    CAS  PubMed  Google Scholar 

  • Chang S, Cohen SN (1989) High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol Gen Genet 168:111–115

    Article  Google Scholar 

  • Chang SY, McGary EC, Chang S (1989) Methionine aminopeptidase gene of Escherichia coli is essential for cell growth. J Bacteriol 171:4071–4072

    CAS  PubMed  Google Scholar 

  • Chapman AG, Fall L, Atkinson DE (1971) Adenylate energy charge in Escherichia coli during growth and starvation. J Bacteriol 108:1072–1086

    CAS  PubMed  Google Scholar 

  • Chen ZF, Wojcik SF, Welker NE (1986) Genetic analysis of Bacillus stearothermophilus by protoplast fusion. J Bacteriol 165:994–1001

    CAS  PubMed  Google Scholar 

  • Cousin D, Buttin G (1969) Mutants thermosensibles d‘ Escherichia coli K12. III – Une mutation lêtale d’ E. coli affectant l’activité de l’adénylate-kinase. Ann Inst Pasteur (Paris) 117:612–630

    CAS  Google Scholar 

  • Criswell AR, Bae E, Stec B, Konisky J, Phillips GN Jr (2003) Structures of thermophilic and mesophilic adenylate kinases from the genus Methanococcus. J Mol Biol 330:1087–1099

    Article  CAS  PubMed  Google Scholar 

  • Cummings HS, Hershey JW (1994) Translation initiation factor IF1 is essential for cell viability in Escherichia coli. J Bacteriol 176:198–205

    CAS  PubMed  Google Scholar 

  • Ferber DM, Haney PJ, Berk H, Lynn D, Konisky J (1997) The adenylate kinase genes of M. voltae, M. thermolithotrophicus, M. jannaschii, and M. igneus define a new family of adenylate kinases. Gene 185:239–244

    Article  CAS  PubMed  Google Scholar 

  • Glaser P, Presecan E, Delepierre M, Surewicz WK, Mantsch HH, Barzu O, Gilles AM (1992) Zinc, a novel structural element found in the family of bacterial adenylate kinases. Biochemistry 31:3038–3043

    CAS  PubMed  Google Scholar 

  • Glembotski CC, Chapman AG, Atkinson DE (1981) Adenylate energy charge in Escherichia coli CR341T28 and properties of heat-sensitive adenylate kinase. J Bacteriol 145:1374–1385

    CAS  PubMed  Google Scholar 

  • Haase GH, Brune M, Reinstein J, Pai EF, Pingoud A, Wittinghofer A (1989) Adenylate kinases from thermosensitive Escherichia coli strains. J Mol Biol 207:151–162

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Jessee J, Bloom FR (1991) Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol 204:63–113

    Article  CAS  PubMed  Google Scholar 

  • Hansmann S, Martin W (2000) Phylogeny of 33 ribosomal and six other proteins encoded in an ancient gene cluster that is conserved across prokaryotic genomes: influence of excluding poorly alignable sites from analysis. Int J Syst Evol Microbiol 50(Pt 4):1655–1663

    CAS  PubMed  Google Scholar 

  • Imanaka T, Fujii M, Aramori I, Aiba S (1982) Transformation of Bacillus stearothermophilus with plasmid DNA and characterization of shuttle vector plasmids between Bacillus stearothermophilus and Bacillus subtilis. J Bacteriol 149:824–830

    CAS  PubMed  Google Scholar 

  • Kahru A, Liiders M, Vanatalu K, Vilu R (1982) Adenylate energy charge during batch culture of Thermoactinomyces vulgaris 42. Arch Microbiol 133:142–144

    Article  CAS  Google Scholar 

  • Kahru A, Vilu R (1990) Role of adenine nucleotides in the regulation of bacterial energy metabolism: theoretical problems and experimental pitfalls. Microbios 62:83–92

    CAS  PubMed  Google Scholar 

  • Kath T, Schmid R, Schafer G (1993) Identification, cloning, and expression of the gene for adenylate kinase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Arch Biochem Biophys 307:405–410

    Article  CAS  PubMed  Google Scholar 

  • Konrad M (1993) Molecular analysis of the essential gene for adenylate kinase from the fission yeast Schizosaccharomyces pombe. J Biol Chem 268:11326–11334

    CAS  PubMed  Google Scholar 

  • Li X, Lindahl L, Sha Y, Zengel JM (1997) Analysis of the Bacillus subtilis S10 ribosomal protein gene cluster identifies two promoters that may be responsible for transcription of the entire 15-kilobase S10-spc-alpha cluster. J Bacteriol 179:7046–7054

    CAS  PubMed  Google Scholar 

  • Lin-Chao S, Chen WT, Wong TT (1992) High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II. Mol Microbiol 6:3385–3393

    CAS  PubMed  Google Scholar 

  • Munier-Lehmann H, Burlacu-Miron S, Craescu CT, Mantsch HH, Schultz CP (1999) A new subfamily of short bacterial adenylate kinases with the Mycobacterium tuberculosis enzyme as a model: a predictive and experimental study. Proteins 36:238–248

    Article  CAS  PubMed  Google Scholar 

  • Narumi I Sawakami, K., Nakamoto, S., Nakayama, N., Yanagisawa, T., Takahashi, N., Kihara, H (1992) A newly isolated Bacillus stearothermophilus K1041 and its transformation by electroporation. Biotechnol Tech 6:83–86

    Google Scholar 

  • Sharp RJ, Riley PW, White D (1992) Heterotrophic thermophilic bacilli. In: Kristjansson JK (ed) Thermophilic bacteria. CRC Press, Boca Raton, pp 19–50

    Google Scholar 

  • Shiba K, Ito K, Yura T, Cerretti DP (1984) A defined mutation in the protein export gene within the spc ribosomal protein operon of Escherichia coli: isolation and characterization of a new temperature-sensitive secY mutant. EMBO J 3:631–635

    CAS  PubMed  Google Scholar 

  • Stolworthy TS, Black ME (2001) The mouse guanylate kinase double mutant E72Q/D103N is a functional adenylate kinase. Protein Eng 14:903–909

    Article  CAS  PubMed  Google Scholar 

  • Studholme DJ, Jackson RA, Leak DJ (1999) Phylogenetic analysis of transformable strains of thermophilic Bacillus species. FEMS Microbiol Lett 172:85–90

    Article  CAS  PubMed  Google Scholar 

  • Suh JW, Boylan SA, Oh SH, Price CW (1996) Genetic and transcriptional organization of the Bacillus subtilis spc-alpha region. Gene 169:17–23

    Article  CAS  PubMed  Google Scholar 

  • Swedes JS, Sedo RJ, Atkinson DE (1975) Relation of growth and protein synthesis to the adenylate energy charge in an adenine-requiring mutant of Escherichia coli. J Biol Chem 250:6930–6938

    CAS  PubMed  Google Scholar 

  • Vallier H, Welker NE (1990) Genetic map of the Bacillus stearothermophilus NUB36 chromosome. J Bacteriol 172:793–801

    CAS  PubMed  Google Scholar 

  • Vieille C, Burdette DS, Zeikus JG (1996) Thermozymes. Biotechnol Annu Rev 2:1–83

    Google Scholar 

  • Vonrhein C, Bonisch H, Schafer G, Schulz GE (1998) The structure of a trimeric archaeal adenylate kinase. J Mol Biol 282:167–179

    Article  CAS  PubMed  Google Scholar 

  • Wei P, Stewart CR (1993) A cytotoxic early gene of Bacillus subtilis bacteriophage SPO1. J Bacteriol 175:7887–7900

    CAS  PubMed  Google Scholar 

  • Wu LJ, Welker NE (1989) Protoplast transformation of Bacillus stearothermophilus NUB36 by plasmid DNA. J Gen Microbiol 135:1315–1324

    CAS  PubMed  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was in part funded by a grant from the National Science Foundation (NSF/MCB - 0212417). R.C. is the recipient of a training fellowship from the W.M. Keck Foundation to the Gulf Coast Consortia through the Keck Center for Computational and Structural Biology. The authors would like to thank the MacKenzie Lab (Rice University, Houston, TX) for equipment, helpful discussions and suggestions. The authors are indebted to Dr. N. Welker (Northwestern University, Evanston, IL, USA) for help with G. stearothermophilus NUB3621-R transformation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousif Shamoo.

Additional information

Communicated by G. Antranikian

The authors would like to dedicate this paper to the memory of Dr. Neil Welker

Rights and permissions

Reprints and permissions

About this article

Cite this article

Couñago, R., Shamoo, Y. Gene replacement of adenylate kinase in the gram-positive thermophile Geobacillus stearothermophilus disrupts adenine nucleotide homeostasis and reduces cell viability. Extremophiles 9, 135–144 (2005). https://doi.org/10.1007/s00792-004-0428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-004-0428-x

Keywords

Navigation