, Volume 8, Issue 5, pp 411–419 | Cite as

Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid

  • Jennifer L. MacaladyEmail author
  • Martha M. Vestling
  • David Baumler
  • Nick Boekelheide
  • Charles W. Kaspar
  • Jillian F. Banfield
Original Paper


Ferroplasma acidarmanus thrives in hot, extremely low pH, metal-rich solutions associated with dissolving metal sulfide ore deposits. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and thin layer chromatography analyses of F. acidarmanus membranes indicate that tetraether lipids predominate, with at least three core lipid structures. NMR measurements indicate that the cytoplasmic pH of F. acidarmanus is ~5.6. The optimal growth pH is ~1.2, and the lowest growth pH is ~0.0. Thus, these organisms maintain pH gradients across their membranes that approach 5 pH units. Tetraether lipids were originally thought to be specifically associated with thermophiles but are now known to be widely distributed within the archaeal domain. Our data, in combination with recently published results for thermophilic and mesothermophilic acidophilic archaea, indicate that there may be a stronger association between tetraether lipids and tolerance to acid and/or large metal ion gradients.


Archaea Acidophile Acid mine drainage Tetraether lipid Membrane monolayer 



A total lipid extract of H. saccharovorum was kindly provided by Dr. Linda Jahnke, NASA Ames Research Center, Ames, Calif. We also thank Mark E. Anderson of the University of Wisconsin NMR facility for his assistance in NMR measurements. Funding was provided by NSF LExEN grant number MC9978205, NSF EGB grant number CHE 9807598, and DOE Microbial Genomics Program grant number ER63160-1017457-0007147.


  1. Batrakov SG, Pivovarova TA, Esipov SE, Sheichenko VI, Karavaiko GI (2002) Beta-D-glucopyranosyl caldarchaetidylglycerol is the main lipid of the acidophilic, mesophilic, ferrous iron-oxidising archaeon Ferroplasma acidiphilum. Biochim Biophys Acta 1581:29–35CrossRefPubMedGoogle Scholar
  2. Blochl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles 1:14–21CrossRefPubMedGoogle Scholar
  3. Burton NP, Norris PR (2000) Microbiology of acidic, geothermal springs of Montserrat: environmental rDNA analysis. Extremophiles 4:315–320CrossRefPubMedGoogle Scholar
  4. Comita PB, Gagosian RB, Pang H, Costello CE (1984) Structural elucidation of a unique macrocyclic membrane lipid from a new, extremely thermophilic, deep-sea hydrothermal vent archaebacterium, Methanococcus jannaschii. J Biol Chem 259:15234–15241PubMedGoogle Scholar
  5. Corcelli A, Colella M, Mascolo G, Fanizzi FP, Kates M (2000) A novel glycolipid and phospholipid in the purple membrane. Biochemistry 39:3318–3326CrossRefPubMedGoogle Scholar
  6. De Rosa M, Gambacorta A, Lanzotti V, Trincone A, Harris JE, Grant WD (1986) A range of ether core lipids from the methanogenic archaebacterium Methanosarcina barkeri. Biochimica Biophys Acta 875:487–492Google Scholar
  7. De Rosa M, Gambacorta A, Trincone A, Basso A, Zillig W, Holz I (1987) Lipids of Thermococcus celer, a sulfur-reducing archaebacterium: structure and biosynthesis. Syst Appl Microbiol 9:1–5Google Scholar
  8. De Vossenberg JLCM van, Driessen AJM, Konings WN (1998) The essence of being extremophilic: The role of the unique archaeal membrane lipids. Extremophiles 2:163–170CrossRefPubMedGoogle Scholar
  9. DeLong EF, King LL, Massana R, Cittone H, Murray A, Schleper C, Wakeham SG (1998) Dibiphytanyl ether lipids in nonthermophilic crenarchaeotes. Appl Environ Microbiol 64:1133–1138PubMedGoogle Scholar
  10. Edwards KJ, Schrenk MO, Hamers R, Banfield JF (1998) Microbial oxidation of pyrite: Experiments using microorganisms from an extreme acidic environment. Am Mineral 83:1444–1453Google Scholar
  11. Edwards KJ, Gihring TM, Banfield JF (1999) Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Appl Environ Microbiol 65:3627–3632PubMedGoogle Scholar
  12. Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799CrossRefPubMedGoogle Scholar
  13. Ferrante G, Ekiel I, Sprott GD (1986) Structural characterization of the lipids of Methanococcus voltae, including a novel N-acetylglucosamine 1-phosphate diether. J Biol Chem 261:17062–17066PubMedGoogle Scholar
  14. Ferrante G, Ekiel I, Patel GB, Sprott GD (1988) A novel core lipid isolated from the aceticlastic methanogen Methanothrix concilii GP6. Biochim Biophys Acta 963:173–182CrossRefGoogle Scholar
  15. Ferrante G, Richards JC, Sprott GD (1990) Structures of polar lipids from the thermophilic, deep-sea archaeobacterium Methanococcus jannaschii. Biochem Cell Biol 68:274–283PubMedGoogle Scholar
  16. Gabriel JL, Chong PLG (2000) Molecular modeling of archaebacterial bipolar tetraether lipid membranes. Chem Phys Lipids 105:193–200CrossRefPubMedGoogle Scholar
  17. Golyshina OV, Pivovarova TA, Karavaiko GI, Kondrat‘eva TF, Moore ERB, Abraham W-R, Luensdorf H, Timmis KN, Yakimov MM, Golyshin PN (2000) Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 50:997–1006PubMedGoogle Scholar
  18. Hezayen FF, Tindall BJ, Steinbuechel A, Rehm BHA (2002) Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov., and transfer of Natronobacterium nitratireducens to Halobiforma nitratireducens comb. nov. Int J Syst Evol Microbiol 52:2271–2280CrossRefPubMedGoogle Scholar
  19. Hoefs MJL, Schouten S, De Leeuw JW, King LL, Wakeham SG, Damste JSS (1997) Ether lipids of planktonic archaea in the marine water column. Appl Environ Microbiol 63:3090–3095Google Scholar
  20. Hopmans EC, Schouten S, Pancost RD, van der Meer MTJ, Sinninghe Damste JS (2000) Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 14:585–589CrossRefPubMedGoogle Scholar
  21. Huber R, Dyba D, Huber H, Burggraf S, Rachel R (1998) Sulfur-inhibited Thermosphaera aggregans sp. nov., a new genus of hyperthermophilic archaea isolated after its prediction from environmentally derived 16S rRNA sequences. Int J Syst Bacteriol 48:31–38PubMedGoogle Scholar
  22. Huber H, Burggraf S, Mayer T, Wyschkony I, Rachel R, Stetter KO (2000) Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov. and Ignicoccus pacificus sp. nov. Int J Syst Evol Microbiol 50:2093–2100PubMedGoogle Scholar
  23. Itoh YH, Kurosawa N, Uda I, Sugai A, Tanoue S, Itoh T, Horiuchi T (2001) Metallosphaera sedula TA-2, a calditoglycerocaldarchaeol deletion strain of a thermoacidophilic archaeon. Extremophiles 5:241–245CrossRefPubMedGoogle Scholar
  24. Kessel M, Volker S, Santarius U, Huber R, Baumeister W (1990) Three-dimensional reconstruction of the surface protein of the extremely thermophilic archaebacterium Archaeoglobus fulgidus. Syst Appl Microbiol 13:207–213Google Scholar
  25. Langworthy TA (1982) Lipids of Thermoplasma. Methods Enzymol 88:396–406CrossRefGoogle Scholar
  26. Lanzotti V, De Rosa M, Trincone A, Basso AL, Gambacorta A, Zillig W (1987) Complex Lipids from Desulfurococcus mobilis a sulfur-reducing Archaebacterium. Biochim Biophys Acta 922:95–102CrossRefGoogle Scholar
  27. Lanzotti V, Nicolaus B, Trincone A, Grant WD (1988) The glycolipid of Halobacterium saccharovorum. FEMS Microbiol Lett 55:223–228Google Scholar
  28. Lanzotti V, Trincone A, Nicolaus B, Zillig W, De Rosa M, Gambacorta A (1989) Complex lipids of Pyrococcus and AN1, thermophilic members of archaebacteria belonging to Thermococcales. Biochim Biophys Acta 1004:44–48CrossRefGoogle Scholar
  29. Lattuati A, Guezennec J, Metzger P, Largeau C (1998) Lipids of Thermococcus hydrothermalis, an archaea isolated from a deep-sea hydrothermal vent. Lipids 33:319–326PubMedGoogle Scholar
  30. Lizama C, Monteoliva-Sanchez M, Suarez-Garcia A, Rosello-Mora R, Aguilera M, Campos V, Ramos-Cormenzana A (2002) Halorubrum tebenquichense sp. nov., a novel halophilic archaeon isolated from the Atacama Saltern, Chile. Int Syst Evol Microbiol 52:149–155Google Scholar
  31. Lundberg P, Harmsen E, Ho C, Vogel HJ (1990) NMR studies of cellular metabolism. Anal Biochem 191:193–222PubMedGoogle Scholar
  32. Macalady J, Croft L, Vestling M, Harms A, Zheng L, Barry A, Baumler D, Kaspar C, Fox B, Banfield JF (2002) Tetraether-linked membrane lipids are essential for archaeal life in acid. Abstr Gen Meet Am Soc Microbiol 102:321Google Scholar
  33. Montalvo-Rodriguez R, Lopez-Garriga J, Vreeland RH, Oren A, Ventosa A, Kamekura M (2000) Haloterrigena thermotolerans sp. nov., a halophilic archaeon from Puerto Rico. Int J Syst Evol Microbiol 50:1065–1071PubMedGoogle Scholar
  34. Moon RB, Richards JH (1972) Conformational studies of various hemoglobins by natural-abundance C13 NMR spectroscopy. Proc Natl Acad Sci USA 69:2193PubMedGoogle Scholar
  35. Morii H, Eguchi T, Nishihara M, Kakinuma K, Konig H, Koga Y (1998) A novel ether core lipid with H-shaped C80-isoprenoid hydrocarbon chain from the hyperthermophilic methanogen Methanothermus fervidus. Biochim Biophys Acta 1390:339–345CrossRefPubMedGoogle Scholar
  36. Morii H, Yagi H, Akutsu H, Nomura N, Sako Y, Koga Y (1999) A novel phosphoglycolipid archaetidyl(glucosyl)inositol with two sesterterpanyl chains from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1. Biochim Biophys Acta 1436:426–436CrossRefPubMedGoogle Scholar
  37. Nagle JF, Morowitz HJ (1978) Molecular mechanisms for proton transport in membranes. Proc Natl Acad Sci USA 75:298–302PubMedGoogle Scholar
  38. Nichols PD, Franzmann PD (1992) Unsaturated diether phospholipids in the Antarctic methanogen Methanococcoides burtonii. FEMS Microbiol Lett 98:205–208CrossRefGoogle Scholar
  39. Nishihara M, Morii H, Matsuno K, Ohga M, Stetter KO, Koga Y (2002) Structural analysis by reductive cleavage with LiAlH4 of an allyl ether choline-phospholipid, archaetidylcholine, from the hyperthermophilic methanoarchaeon Methanopyrus kandleri. Archaea 1:123–131Google Scholar
  40. Okibe N, Garicke M, Hallberg KB, Johnson DB (2003) Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Appl Environ Microbiol 69:1936–1943CrossRefPubMedGoogle Scholar
  41. Oren A, Gurevich P, Gemmell RT, Teske A (1995) Halobaculum gomorrense gen. nov., sp. nov., a novel extremely halophilic archaeon from the Dead Sea. Int J Syst Bacteriol 45:747–754PubMedGoogle Scholar
  42. Oren A, Ventosa A, Gutierrez MC, Kamekura M (1999) Haloarcula quadrata sp. nov., a square, motile archaeon isolated from a brine pool in Sinai (Egypt). Int J Syst Bacteriol 49:1149–1155PubMedGoogle Scholar
  43. Petroff OA, Prichard JW, Behar KL, Alger JR, Hollander JR, Shulman RG (1985) Cerebral intracellular pH by 31P nuclear magnetic resonance spectroscopy. Neurology 35:781–788PubMedGoogle Scholar
  44. Pivovarova TA, Kondrat’eva TF, Batrakov SG, Esipov SE, Sheichenko VI, Bykova SA, Lysenko AM, Karavaiko GI (2002) Phenotypic features of Ferroplasma acidiphilum strains YT and Y-2. Mikrobiologiya 71:809–818Google Scholar
  45. Qiu D-F, Games MPL, Xiao X-Y, Games DE, Walton TJ (1998) Application of high-performance liquid chromatography/electrospray mass spectrometry for the characterization of membrane lipids in the haloalkaliphilic archaebacterium Natronobacterium magadii. Rapid Commun Mass Spectrom 12:939–946CrossRefGoogle Scholar
  46. Qiu DF, Games MPL, Xiao XY, Games DE, Walton TJ (2000) Characterisation of membrane phospholipids and glycolipids from a halophilic archaebacterium by high-performance liquid chromatography/electrospray mass spectrometry. Rapid Commun Mass Spectrom 14:1586–1591CrossRefPubMedGoogle Scholar
  47. Sako Y, Nomura N, Uchida A, Ishida Y, Morii H, Koga Y, Hoaki T, Maruyama T (1996) Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100 degree C. Int J Syst Bacteriol 46:1070–1077PubMedGoogle Scholar
  48. Schleper C, Puehler G, Holz I, Gambacorta A, Janekovic D, Santarius U, Klenk H-P, Zillig W (1995) Picrophilus gen. nov., fam. nov.: A novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol 177:7050–7059PubMedGoogle Scholar
  49. Shimada H, Nemoto N, Shida Y, Oshima T, Yamagishi A (2002) Complete polar lipid composition of Thermoplasma acidophilum HO-62 determined by high-performance liquid chromatography with evaporative light-scattering detection. J Bacteriol 184:556–563CrossRefPubMedGoogle Scholar
  50. Sprott GD, Ekiel I, Dicaire C (1990) Novel, acid-labile, hydroxydiether lipid cores in methanogenic bacteria. J Biol Chem 265:13735–13740PubMedGoogle Scholar
  51. Sprott GD, Dicaire CJ, Patel GB (1994a) The ether lipids of Methanosarcina mazei and other Methanosarcina species, compared by fast atom bombardment mass spectrometry. Can J Microbiol 40:837–843Google Scholar
  52. Sprott GD, Ferrante G, Ekiel I (1994b) Tetraether lipids of Methanospirillum hungatei with head groups consisting of phospho-N,N-dimethylaminopentanetetrol, phospho-N,N,N-trimethylaminopentanetetrol, and carbohydrates. Biochim Biophys Acta 1214:234–242CrossRefPubMedGoogle Scholar
  53. Sprott GD, Agnew BJ, Patel GB (1997) Structural features of ether lipids in the archaeobacterial thermophiles Pyrococcus furiosus, Methanopyrus kandleri, Methanothermus fervidus, and Sulfolobus acidocaldarius. Can J Microbiol 43:467–476Google Scholar
  54. Sprott G, Krishnan L, Dicaire C, Patel G (1999) Liposomes composed of archaeobacterial polar lipids strongly stimulate both humoral and cell-mediated immune responses to an entrapped protein, in BALB/c mice. Abstr Gen Meet Am Soc Microbiol 99:276Google Scholar
  55. Swain M, Brisson J-R, Sprott GD, Cooper FP, Patel GB (1997) Identification of beta-lt-gulose as the sugar moiety of the main polar lipid Thermoplasma acidophilum. Biochim Biophys Acta 1345:56–64CrossRefPubMedGoogle Scholar
  56. Tachibana A (1994) A novel prenyltransferase, farnesylgeranyl diphosphate synthase, from the haloalkaliphilic archaeon, Natronobacterium pharaonis. FEBS Lett 341:291–294CrossRefPubMedGoogle Scholar
  57. Takai K, Sugai A, Itoh T, Horikoshi K (2000) Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:489–500PubMedGoogle Scholar
  58. Trincone A, De Rosa M, Gambacorta A, Lanzotti V, Nicolaus B, Harris JE, Grant WD (1988) A simple chromatographic procedure for the detection of cyclized archaebacterial glycerol-bisdiphytanyl-glycerol tetraether core lipids. J Gen Microbiol 134:3159–3164PubMedGoogle Scholar
  59. Trincone A, Lanzotti V, Nicolaus B, Zillig W, De Rosa M, Gambacorta A (1989) Comparative lipid composition of aerobically and anaerobically grown Desulfurolobus ambivalens, an autotrophic thermophilic archaebacterium. J Gen Microbiol 135:2751–2758Google Scholar
  60. Trincone A, Nicolaus B, Palmieri G, De Rosa M, Huber R, Huber G, Stetter KO, Gambacorta A (1992) Distribution of complex and core lipids within new hyperthermophilic members of the Archaea domain. Syst Appl Microbiol 15:11–17Google Scholar
  61. Uda I, Sugai A, Itoh YH, Itoh T (2001) Variation in molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature. Lipids 36:103–105PubMedGoogle Scholar
  62. Vasquez M, Moore ERB, Espejo RT (1999) Detection by polymerase chain reaction amplification and sequencing of an archaeon in a commercial-scale copper bioleaching plant. FEMS Microbiol Lett 173:183–187CrossRefGoogle Scholar
  63. Volkl P, Huber R, Drobner E, Rachel R, Burggraf S, Trincone A, Stetter KO (1993) Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59:2918–2926PubMedGoogle Scholar
  64. Xu Y, Zhou P, Tian X (1999) Characterization of two novel haloalkaliphilic archaea Natronorubrum bangense gen. nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov. Int J Syst Bacteriol 49:261–266PubMedGoogle Scholar
  65. Zillig W, Gierl A, Schreiber G, Wunderl S, Janekovic D, Stetter KO, Klenk HP (1983) The Archaebacterium Thermofilum pendens represents a novel genus of the thermophilic anaerobic sulfur respiring Thermoproteales. Syst Appl Microbiol 4:79–87Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Jennifer L. Macalady
    • 1
    • 6
    Email author
  • Martha M. Vestling
    • 2
  • David Baumler
    • 3
  • Nick Boekelheide
    • 4
  • Charles W. Kaspar
    • 3
  • Jillian F. Banfield
    • 1
    • 5
  1. 1.Department of Earth and Planetary SciencesUniversity of California BerkeleyBerkeleyUSA
  2. 2.Chemistry DepartmentUniversity of Wisconsin MadisonMadisonUSA
  3. 3.Department of Food Microbiology and ToxicologyUniversity of Wisconsin MadisonMadisonUSA
  4. 4.Geology DepartmentCarleton CollegeNorthfieldUSA
  5. 5.Department of Environmental Science, Policy and ManagementUniversity of California BerkeleyBerkeleyUSA
  6. 6.Geology DepartmentCarleton CollegeNorthfieldUSA

Personalised recommendations