Skip to main content
Log in

Salt-dependent studies of NADP-dependent isocitrate dehydrogenase from the halophilic archaeon Haloferax volcanii

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The salt-dependent stability of recombinant dimeric isocitrate dehydrogenase [ICDH; isocitrate: NADP oxidoreductase (decarboxylating), EC 1.1.1.42] from the halophilic archaeon Haloferax volcanii (Hv) was investigated in various conditions. Hv ICDH dissociation/deactivation was measured to probe the respective effect of anions and cations on stability. Surprisingly, enzyme stability was found to be mainly sensitive to cations and very little (or not) sensitive to anions. Divalent cations induced a strong shift of the active/inactive transition towards low salt concentration. A high resistance of Hv ICDH to chemical denaturation was also found. The data were analysed and are discussed in the framework of the solvation stability model for halophilic proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–f

Similar content being viewed by others

References

  • Akoev V, Gogol EP, Barnett ME, Zolkiewski M (2004) Nucleotide-induced switch in oligomerization of the AAA+ATPase ClpB. Protein Sci 13:567–574

    Article  CAS  PubMed  Google Scholar 

  • Bell GS, Russell RJM, Connaris H, Hough DW, Danson MJ, Taylor GL (2002) Stepwise adaptations of citrate synthase to survival at life’s extremes. From psychrophile to hyperthermophile. Eur J Biochem 269:6250–6260

    Article  CAS  PubMed  Google Scholar 

  • Bieger B, Essen L-O, Oesterhelt D (2003) Crystal structure of halophilic dodecin. A novel, dodecameric flavin binding protein from Halobacterium salinarum. Structure 11:375–385

    Article  CAS  PubMed  Google Scholar 

  • Bonete MJ, Perez-Pomares F, Diaz S, Ferrer J, Oren A (2003) Occurrence of two different glutamate dehydrogenase activities in the halophilic bacterium Salinibacter ruber. FEMS Microbiol Lett 226:181–186

    Article  CAS  PubMed  Google Scholar 

  • Bonneté F, Madern D, Zaccai G (1994) Stability against denaturation mechanisms in halophilic malate dehydrogenase “adapt” to solvent conditions. J Mol Biol 244:436–447

    CAS  PubMed  Google Scholar 

  • Camacho ML, Brown RA, Bonete MJ, Danson MJ, Hough DW (1995) Isocitrate dehydrogenases from Haloferax volcanii and Sulfolobus solfataricus: enzyme purification, characterisation and N-terminal sequence. FEMS Microbiol Lett 134:85–90

    Article  CAS  PubMed  Google Scholar 

  • Camacho M, Rodriguez-Arnedo A, Bonete MJ (2002) NADP-dependent isocitrate dehydrogenase from the halophilic archaeon Haloferax volcanii: cloning, sequence determination and overexpression in Escherichia coli. FEMS Microbiol Lett 209:155–160

    Article  CAS  PubMed  Google Scholar 

  • Collins KD (1997) Charge density-dependent strength of hydration and biological structure. Biophys J 72:65–76

    CAS  PubMed  Google Scholar 

  • Costenaro L, Zaccai G, Ebel C (2002) Link between protein–solvent and weak protein–protein interactions gives insight into halophilic adaptation. Biochemistry 41:13245–13252

    Article  CAS  PubMed  Google Scholar 

  • Dill KA (1990) Dominant forces in protein folding. Biochemistry 29:7133–7155

    CAS  PubMed  Google Scholar 

  • Dym O, Mevarech M, Sussman JL (1995) Structural features that stabilize halophilic malate dehydrogenase from an archaebacterium. Science 267:1344–1346

    CAS  Google Scholar 

  • Ebel C, Faou P, Franzetti B, Kernel B, Madern D, Pascu M, Pfister C, Richard SB, Zaccai G (1999a) Molecular interactions in extreme halophiles. The solvation–stabilisation hypothesis for halophilic proteins. In: Oren A (ed) Microbiology and biogeochemistry of hypersaline environments. CRC, Boca Raton, pp 227–237

  • Ebel C, Faou P, Kernel B, Zaccai G (1999b) The relative role of anions and cations in the stabilization of halophilic malate dehydrogenase. Biochemistry 38:9039–9047

    CAS  PubMed  Google Scholar 

  • Ebel C, Costenaro, L, Pascu M, Faou P, Kernel B, Proust-De Martin F, Zaccai G (2002) Solvent interactions of halophilic malate dehydrogenase. Biochemistry 41:13234–13244

    Article  CAS  PubMed  Google Scholar 

  • Franzetti B, Schoehn G, Ebel C, Gagnon J, Ruigrok RW, Zaccai G (2001) Characterization of a novel complex from halophilic archaebacteria, which displays chaperone-like activities in vitro. J Biol Chem 276:29906–29914

    Article  CAS  PubMed  Google Scholar 

  • Frolow F, Harel M, Sussman JL, Mevarech M, Shoham M (1996) Protein adaptation to a saturated salt environment: insights from the crystal structure of a halophilic 2Fe–2S ferredoxin. Nat Struct Biol 3:451–457

    Google Scholar 

  • Hippel P von, Schleich T (1969) The effects of neutral salts on the structure and conformational stability of macromolecules in solution. In: Timasheff SN, Fasman GD (eds) Structure of biological macromolecules. Dekker, New York, pp 417–575

  • Irimia A, Ebel C, Madern D, Richard SB, Cosenza LW, Zaccai G, Vellieux FMD (2003) The oligomeric state of Haloacrula marismortui malate dehydrogenase are modulated by solvent components as shown by crystallographic and biochemical studies. J Mol Biol 326:859–873

    Article  CAS  PubMed  Google Scholar 

  • Jaenicke R (2000) Stability and stabilization of globular proteins in solution. J Biotechnol 79:193–203

    Article  CAS  PubMed  Google Scholar 

  • Jaenicke R, Böhm G (1998) The stability of proteins in extreme environments. Curr Opin Struct Biol 8:738–748

    CAS  PubMed  Google Scholar 

  • Karshikoff A, Ladenstein R (1998) Proteins from thermophilic and mesophilic organisms essentially do not differ in packing. Protein Eng 11:867–872

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Kanai H, Aono R, Horikoshi K, Kudo T (1994) Cloning, expression, and nucleotide sequence of the alpha amylase gene of haloalkaliphilic archaeon Natronococcus sp. 3 strain Ah36. J Bacteriol 176:5131–5134

    CAS  PubMed  Google Scholar 

  • Madern D, Zaccai G (1997) Stabilisation of halophilic malate dehydrogenase from Haloarcula marismortui by divalent cations. Effects of temperature, water isotope, cofactor and pH. Eur J Biochem 249:607–611

    CAS  PubMed  Google Scholar 

  • Madern D, Zaccai G (2004) Molecular adaptation: the malate dehydrogenase from the extreme halophilic bacterium Salinibacter ruber behaves like a non-halophilic protein. Biochimie 86:295–303

    Article  PubMed  Google Scholar 

  • Madern D, Pfister C, Zaccai G (1995) Mutation at a single acidic amino acid enhances the halophilic behaviour of malate dehydrogenase from Haloarcula marismortui in physiological salts. Eur J Biochem 230:1088–1095

    CAS  PubMed  Google Scholar 

  • Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98

    CAS  PubMed  Google Scholar 

  • Mandrich L, Pezzullo M, Del Vecchio P, Barone G, Rossi M, Manco G (2004) Analysis of thermal adaptation in the HSL enzyme family. J Mol Biol 335:357–369

    Article  CAS  PubMed  Google Scholar 

  • Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86:155–164

    CAS  PubMed  Google Scholar 

  • Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276:10577–10580

    Article  CAS  PubMed  Google Scholar 

  • Philo JS (2000) A method for directly fitting the time derivative of sedimentation velocity data and an alternative algorithm for calculating sedimentation coefficient distribution functions. Anal Biochem 279:151–163

    Article  CAS  PubMed  Google Scholar 

  • Pieper U, Kapadia G, Mevarech M, Herzberg O (1998) Structural features of halophilicity derived from the crystal structure of dihydrofolate reductase from the Dead Sea halophilic archaeon, Haloferax volcanii. Structure 6:75–88

    CAS  PubMed  Google Scholar 

  • Pundak S, Aloni H, Eisenberg H (1981) Structure and activity of malate dehydrogenase from the extreme halophilic bacteria of the Dead Sea. 2. Inactivation, dissociation and unfolding at NaCl concentrations below 2 M. Salt, salt concentration and temperature dependence of enzyme stability. Eur J Biochem 118:471–477

    CAS  PubMed  Google Scholar 

  • Richard SB, Madern D, Garcin E, Zaccai G (2000) Halophilic adaptation: novel solvent protein interactions observed in the 2.9 and 2.6 A resolution structures of the wild type and a mutant of malate dehydrogenase from Haloarcula marismortui. Biochemistry 39:992–1000

    Article  CAS  PubMed  Google Scholar 

  • Scandurra R, Consalvi V, Chiaraluce R, Politi L, Engel PC (2000) Protein stability in extremophilic archaea. Front Biosci 5:787–795

    Google Scholar 

  • Schellman JA (1987) Selective binding and solvent denaturation. Biopolymers 26:549–559

    CAS  PubMed  Google Scholar 

  • Solovyova A, Schuck P, Costenaro L, Ebel C (2001) Non-ideality by sedimentation velocity of halophilic malate dehydrogenase in complex solvents. Biophys J 81:1868–1880

    CAS  PubMed  Google Scholar 

  • Stafford WF III (1992) Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile. Anal Biochem 203:295–301

    CAS  PubMed  Google Scholar 

  • Steen IH, Madern D, Karlstrom M, Lien T, Ladenstein R, Birkeland NK (2001) Comparison of isocitrate dehydrogenase from three hyperthermophiles reveals differences in thermostability, cofactor specificity, oligomeric state, and phylogenetic affiliation. J Biol Chem 276:43924–43931

    CAS  PubMed  Google Scholar 

  • Taupin CM, Hartlein M, Leberman R (1997) Seryl-tRNA synthetase from the extreme halophile Haloarcula marismortui. Isolation, characterization and sequencing of the gene and its expression in Escherichia coli. Eur J Biochem 243:141–150

    CAS  PubMed  Google Scholar 

  • Tehei M, Madern D, Pfister C, Zaccai G (2001) Fast dynamics of halophilic malate dehydrogenase and BSA measured by neutron scattering under various solvent conditions influencing protein stability. Proc Natl Acad Sci USA 98:14356–14361

    Article  CAS  PubMed  Google Scholar 

  • Timasheff SN (1992) Solvent effects on protein stability. Curr Opin Struct Biol 2:35–39

    Article  Google Scholar 

  • Wright D, Banks D, Lohman J, Hilsenbeck J, Gloss L (2002) The effect of salts on the activity and stability of Escherichia coli and Haloferax volcanii dihydrofolate reductases. J Mol Biol 323:327–344

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Fujiwara T, Sato T, Igarashi N, Tanaka N (2002) The 2.0 A crystal structure of catalase-peroxidase from Haloarcula marismortui. Nat Struct Biol 9:691–695

    Article  CAS  PubMed  Google Scholar 

  • Zaccai G, Eisenberg H (1990) Halophilic proteins and the influence of solvent on protein stabilisation. Trends Biochem Sci 9:333–337

    Google Scholar 

  • Zaccai G, Cendrin F, Haik Y, Borochov N, Eisenberg H (1989) Stabilisation of halophilic malate dehydrogenase. J Mol Biol 208:491–500

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Part of this work was financially supported by CICYT (Spain; project number PB98-0969) and by the Programme Interdepartemental GEOMEX du CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Madern.

Additional information

Communicated by W.D. Grant

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madern, D., Camacho, M., Rodríguez-Arnedo, A. et al. Salt-dependent studies of NADP-dependent isocitrate dehydrogenase from the halophilic archaeon Haloferax volcanii . Extremophiles 8, 377–384 (2004). https://doi.org/10.1007/s00792-004-0398-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-004-0398-z

Keywords

Navigation