, Volume 8, Issue 4, pp 325–334 | Cite as

Thialkalivibrio halophilus sp. nov., a novel obligately chemolithoautotrophic, facultatively alkaliphilic, and extremely salt-tolerant, sulfur-oxidizing bacterium from a hypersaline alkaline lake

  • Horia Banciu
  • Dimitry Y. Sorokin
  • Erwin A. Galinski
  • Gerard Muyzer
  • Robbert Kleerebezem
  • J. Gijs Kuenen
Original Paper


A new chemolithoautotrophic, facultatively alkaliphilic, extremely salt-tolerant, sulfur-oxidizing bacterium was isolated from an alkaline hypersaline lake in the Altai Steppe (Siberia, Russia). According to 16S rDNA analysis and DNA–DNA hybridization, strain HL 17T was identified as a new species of the genus Thialkalivibrio belonging to the γ subdivision of the Proteobacteria for which the name Thialkalivibrio halophilus is proposed. Strain HL 17T is an extremely salt-tolerant bacterium growing at sodium concentrations between 0.2 and 5 M, with an optimum of 2 M Na+. It grew at high concentrations of NaCl and of Na2CO3/NaHCO3 (soda). Strain HL 17T is a facultative alkaliphile growing at pH range 7.5–9.8, with a broad optimum between pH 8.0 and 9.0. It used reduced inorganic sulfur compounds (thiosulfate, sulfide, polysulfide, elemental sulfur, and tetrathionate) as energy sources and electron donors. In continuous culture under energy limitation, thiosulfate was stoichiometrically oxidized to sulfate. In sodium carbonate medium under alkaline conditions, the maximum growth rate was similar, while the biomass yield was lower as compared with the NaCl-grown culture. The maximum sulfur-oxidizing capacity measured in washed cells was higher in the soda buffer independent of the growth conditions. The compatible solute content of the biomass was higher in the sodium chloride-grown culture than in the sodium carbonate/bicarbonate-grown culture. The data suggest that the osmotic pressure differences between soda and NaCl solutions might be responsible for the difference observed in compatible solutes production. This may have important implications in overall energetic metabolism of high salt adaptation.


Compatible solutes Facultative alkaliphilic Halophilic Osmotic pressure Soda Sulfur oxidizing Thialkalivibrio halophilus 



This work was financially supported by Technology Foundation STW, project DST.4653 and project WCB.5939 and by the Program of the Russian Acadamy of Sciences “Molecular and Cell Biology”, RFBR Grant 04-04-48647. We thank E. Yildirim, P. Roosken, and M. Stein for their technical assistance and L. Vesnina for help in the field work in Altai.


  1. Alfassi ZB (2001) Non-destructive elemental analysis. Blackwell, OxfordGoogle Scholar
  2. Apelblat A, Korin E (1998) The vapor pressures of saturated aqueous solutions of sodium chloride, sodium bromide, sodium nitrate, sodium nitrite, potassium iodate, and rubidium chloride at temperatures from 227 K to 323 K. J Chem Thermodynamics 30:59–71CrossRefGoogle Scholar
  3. Apelblat A, Manzurola E (2003) Solubilities and vapor pressures of saturated aqueous solutions of sodium tetraborate, sodium carbonate, and magnesium sulfate and freezing-temperature lowerings of sodium tetraborate and sodium carbonate solutions. J Chem Thermodynamics 35:221–238CrossRefGoogle Scholar
  4. Banciu H, Sorokin DY, Kleerebezem R, Muyzer G, Galinski EA, Kuenen JG (2004) Growth Kinetics of haloalkaliphilic, sulfur-oxidizing bacterium Thioalkalivibrio versutus strain ALJ95 in continuous culture. Extremophiles 8:185–192, DOI 10.1007/s00792-004-0376-5Google Scholar
  5. Becker-Hapak M, Troxtel E, Hoerter J, Eisenstark A (1997) RpoS-dependent overexpression of carotenoids from Erwinia herbicola in OXYR deficient Escherichia coli. Biochim Biophys Res Commun 239:305–309CrossRefGoogle Scholar
  6. Chattopadhyay MK, Jagannadham MV, Vairamani M, Shivaji S (1997) Carotenoid pigments of an Antarctic psychrotrophic bacterium Micrococcus roseus: temperature dependent biosynthesis, structure, and interaction with synthetic membranes. Biochem Biophys Res Commun 239:85–90CrossRefPubMedGoogle Scholar
  7. De Ley P, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142PubMedGoogle Scholar
  8. Duckworth AW, Grant WD, Jones BE, van Steenbergen R (1996) Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19:181–191Google Scholar
  9. Galinski EA, Herzog RM (1990) The role of trehalose as a substitute for nitrogen-containing compatible solutes (Ectothiorhodospira halochloris). Arch Microbiol 153:607–613Google Scholar
  10. Galinski EA, Trüper HG (1982) Betaine, a compatible solute in the extremely halophilic phototrophic bacterium Ectothiorhodospira halochloris. FEMS Microbiol Lett 13:357–360Google Scholar
  11. Grant WD, Tindall BJ (1986) The alkaline saline environment. In: Herbert RA, Codd GA (eds) Microbes in extreme environments. Academic, London, pp 25–54Google Scholar
  12. Grant WD, Gemmell RT, McGenity TJ (1998) Halophiles. In: Horikoshi K, Grant WD (eds) Extremophiles—microbial life in extreme environments. Wiley series in ecological and applied microbiology. Wiley, New York, pp 93–132Google Scholar
  13. Humayoun SB, Bano N, Hollibaugh JT (2003) Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol 69:1030–1042CrossRefPubMedGoogle Scholar
  14. Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200CrossRefPubMedGoogle Scholar
  15. Kelly DP, Chambers, LA, Trudinger, PA (1969) Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulfate and tetrathionate. Anal Chem 41:898–901Google Scholar
  16. Kolmert A, Wikstrom P, Hallberg KB (2000) A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures. J Microbiol Methods 41:179–184CrossRefPubMedGoogle Scholar
  17. Kuenen JG, Robertson LA, Tuovinen OH (1992) The genera Thiobacillus, Thiomicrospira and Thiosphaera. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, Berlin Heidelberg New York, pp 2638–2657Google Scholar
  18. Lobo VMM, Quaresma JL (1989) Handbook of electrolyte solutions. Part B. Physical sciences data 41. Elsevier, AmsterdamGoogle Scholar
  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  20. Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83CrossRefPubMedGoogle Scholar
  21. Marmur J (1961) A procedure for isolation of DNA from microorganisms. J Mol Biol 3:208–214Google Scholar
  22. Miller NJ, Sampson J, Candeias LP, Bramley PM, RiceEvans CA (1996) Antioxidant activities of carotenes and xanthophylls. FEBS Lett 384:240–242CrossRefPubMedGoogle Scholar
  23. Oren A (1994) The ecology of the extremely halophilic archaea. FEMS Microbiol Rev 13:415–430Google Scholar
  24. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348PubMedGoogle Scholar
  25. Oren A (2002) Halophilic microorganisms and their environments. Kluwer, DordrechtGoogle Scholar
  26. Pfennig N, Lippert KD (1966) Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55:245–256Google Scholar
  27. Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67PubMedGoogle Scholar
  28. Sörbo B (1957) A colorimetric determination of thiosulfate. Biochim Biophys Acta 23:412–416CrossRefPubMedGoogle Scholar
  29. Sorokin DY, Lysenko AM, Mityushina LL (1996) Isolation and characterization of alkaliphilic heterotrophic bacteria capable of oxidation of inorganic sulfur compounds to tetrathionate. Microbiology (Moscow) 65:370–383Google Scholar
  30. Sorokin DY, Robertson LA, Kuenen JG (2000) Isolation and characterization of alkaliphilic, chemolithoautotrophic, sulphur-oxidizing bacteria. Antonie van Leeuwenhoek 77:251–262Google Scholar
  31. Sorokin DY, Lysenko AM, Mityushina LL, Tourova TP, Jones BE, Rainey FA, Robertson LA, Kuenen JG (2001) Thialkalimicrobium aerophilum gen. nov., sp. nov. and Thialkalimicrobium sibericum sp. nov., and Thialkalivibrio versutus gen. nov., sp. nov., Thialkalivibrio nitratis sp. nov., novel and Thialkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol 51:565–580PubMedGoogle Scholar
  32. Sorokin DY, Gorlenko VM, Tourova TP, Tsapin AI, Nealson KH, Kuenen JG (2002a) Thialkalimicrobium cyclum sp. nov. and Thialkalivibrio jannaschii sp. nov., new species of alkaliphilic, obligately chemolithoautotrophic sulfur-oxidizing bacteria from a hypersaline alkaline Mono Lake (California). Int J Syst Evol Microbiol 52:657–664PubMedGoogle Scholar
  33. Sorokin DY, Tourova TP, Kolganova TV, Sjollema KA, Kuenen JG (2002b) Thioalkalispira microaerophila gen. nov., sp. nov., a novel lithoautotrophic, sulfur-oxidizing bacterium from a soda lake. Int J Syst Evol Microbiol 52:2175–2182CrossRefPubMedGoogle Scholar
  34. Sorokin DY, Tourova TP, Lysenko AM, Mityushina LL, Kuenen JG (2002c) Thialkalivibrio thiocyanoxidans sp. nov. and Thialkalivibrio paradoxus sp. nov., novel alkaliphilic, obligately autotrophic, sulfur-oxidizing bacteria from soda lakes capable of growth on thiocyanate. Int J Syst Evol Microbiol 52:657–664PubMedGoogle Scholar
  35. Sorokin DY, Banciu H, van Loosdrecht MCM, Kuenen JG (2003) Growth physiology and competitive interaction of obligately chemolithoautotrophic, haloalkaliphilic, sulfur-oxidizing bacteria from soda lakes. Extremophiles 7:195–203PubMedGoogle Scholar
  36. Subczynski WK, Markowska E, Gruszecki WI, Sielewiesiuk J (1992) Effects of polar carotenoids on dimyristoylphosphatidylcholine membranes: a spin-label study. Biochim Biophys Acta 1105:97–108PubMedGoogle Scholar
  37. Zavarzin GA, Zhilina TN, Kevbrin VV (1999) The alkaliphilic microbial community and its functional diversity. Microbiology (Moscow) 68:503–521Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Horia Banciu
    • 1
  • Dimitry Y. Sorokin
    • 1
    • 2
  • Erwin A. Galinski
    • 3
  • Gerard Muyzer
    • 1
  • Robbert Kleerebezem
    • 1
  • J. Gijs Kuenen
    • 1
  1. 1.Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
  2. 2.Institute of MicrobiologyRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Microbiology and BiotechnologyRheinische Friedrich-Wilhelms UniversityBonnGermany

Personalised recommendations