Skip to main content

Advertisement

Log in

Thermophilic bacterial DNA polymerases with reverse-transcriptase activity

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Conserved motifs found in known bacterial polI DNA polymerase sequences were identified, and degenerate PCR primers were designed for PCR amplification of an internal portion of polI genes from all bacterial divisions. We describe here a method that has allowed the rapid identification and isolation of 13 polI genes from a diverse selection of thermophilic bacteria and report on the biochemical characteristics of nine of the purified recombinant enzymes. Several enzymes showed significant reverse-transcriptase activity in the presence of Mg2+, particularly the polymerases from Bacillus caldolyticus EA1, Caldibacillus cellovorans CompA.2, and Clostridium stercorarium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Astatke M, Grindley NDF, Joyce CM (1995) Deoxynucleoside triphosphate and pyrophosphate binding sites in the catalytically competent ternary complex for the polymerase reaction catalyzed by DNA polymerase I (Klenow fragment). J Biol Chem 270:1945–1954

    Article  CAS  PubMed  Google Scholar 

  • Cadwell RC, Joyce GF (1992) Randomization of genes by PCR mutagenesis. PCR Methods Appl 2:28–33

    CAS  PubMed  Google Scholar 

  • Carroll NM, Adamson P, Okhravi N (1999) Elimination of bacterial DNA from Taq DNA polymerases by restriction endonuclease digestion. J Clin Microbiol 37:3402–3404

    CAS  PubMed  Google Scholar 

  • D’Alessio JM, Gerard GF (1988) Second-strand cDNA synthesis with E. coli DNA polymerase I and RNase H: the fate of information at the mRNA 5′ terminus and the effect of E. coli DNA ligase. Nucleic Acids Res 16:1999–2014

    CAS  PubMed  Google Scholar 

  • DeStefano JJ, Busier RG, Mallaber LM, Fay PJ, Bambara RA (1991) Polymerization and RNase H activities of the reverse transcriptases from avian myeloblastosis, human immunodeficiency, and Moloney murine leukemia viruses are functionally uncoupled. J Biol Chem 266:7423–7431

    CAS  PubMed  Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    PubMed  Google Scholar 

  • Gerard GF, Collins S, Smith MD (2002) Excess dNTPs minimize RNA hydrolysis during reverse transcription. BioTechniques 33:985–989

    Google Scholar 

  • Harrison GP, Mayo MS, Hunter E, Lever AM (1998) Pausing of reverse transcriptase on retroviral RNA templates is influenced by secondary structures both 5′ and 3′ of the catalytic site. Nucleic Acids Res 26:3433–3442

    Article  CAS  PubMed  Google Scholar 

  • Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) (1990) In PCR protocols: a guide to methods and applications. Academic Press, San Diego

    Google Scholar 

  • Jones MD, Foulkes NS (1989) Reverse transcription of mRNA by Thermus aquaticus DNA polymerase. Nucleic Acids Res 17:8387–8388

    CAS  PubMed  Google Scholar 

  • Leung DW, Chen E, Goeddel DV (1989) A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1:11–15

    Google Scholar 

  • Li Y, Mitaxov V, Waksman G (1999) Structure-based design of novel Taq DNA polymerases with improved properties of dideoxynucleotide incorporation. Proc Natl Acad Sci 96:9491–9496

    Article  CAS  PubMed  Google Scholar 

  • McDonell MW, Simon MN, Studier FW (1977) Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels. J Mol Biol 110:119–146

    CAS  PubMed  Google Scholar 

  • McDowell DG, Burns NA, Parkes HC (1998) Localised sequence regions possessing high melting temperatures prevent the amplification of a mimic in competitive PCR. Nucleic Acids Res 26:3340–3347

    Article  CAS  PubMed  Google Scholar 

  • Morris DD, Reeves RA, Gibbs MD, Saul DJ, Bergquist PL (1995) Correction of the celC pseudogene from Caldicellulosiruptor saccharolyticus and the activity of the gene product on kraft pulp. Appl Environ Microbiol 61:2262–2269

    CAS  PubMed  Google Scholar 

  • Morris DD, Gibbs MD, Chin CW, Koh MH, Wong KK, Allison RW, Nelson JP, Bergquist PL (1998) Cloning of the xynB gene from Dictyoglomus thermophilium Rt46B.1 and action of the gene product on kraft pulp. Appl Environ Microbiol 64:1759–1765

    CAS  PubMed  Google Scholar 

  • Myers TW, Gelfand DH (1991) Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry 30:7661–7666

    CAS  PubMed  Google Scholar 

  • Mytelka DS, Chamberlin MJ (1996) Analysis and suppression of DNA polymerase pauses associated with a trinucleotide consensus. Nucleic Acids Res 24:2774–2781

    Article  CAS  PubMed  Google Scholar 

  • Polesky AH, Steitz TA, Grindley NDF, Joyce CM (1990) Identification of residues critical for the polymerase activity of the Klenow fragment of DNA polymerase I from Escherichia coli. J Biol Chem 265:14579–14591

    CAS  PubMed  Google Scholar 

  • Reeves RA, Gibbs MD, Morris DD, Griffiths KR, Saul DJ, Bergquist, PL (2000) Sequencing and expression of additional xylanase genes from the hyperthermophile Thermotoga maritima FjSS3B.1. Appl Environ Microbiol 66:1532–1537

    Article  CAS  PubMed  Google Scholar 

  • Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S (1998) Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Res 26:1637–1644

    Article  Google Scholar 

  • Wu W, Henderson LE, Copeland TD, Gorelick RJ, Bosche WJ, Rein A, Levin JG (1996) Human immunodeficiency virus type 1 nucleocapsid protein reduces reverse transcriptase pausing at a secondary structure near the murine leukemia virus polypurine tract. J Virol 70:7132–7142

    CAS  PubMed  Google Scholar 

  • Yang SW, Astatke M, Potter J, Chatterjee DK (2002) Mutant Thermotoga neapolitana DNA polymerase I: altered catalytic properties for non-templated nucleotide addition and incorporation of correct nucleotides. Nucleic Acids Res 30:4314–4320

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a SPIRT grant from the Australian Research Council and a Macquarie University research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Bergquist.

Additional information

Communicated by G. Antranikian

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shandilya, H., Griffiths, K., Flynn, E.K. et al. Thermophilic bacterial DNA polymerases with reverse-transcriptase activity. Extremophiles 8, 243–251 (2004). https://doi.org/10.1007/s00792-004-0384-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-004-0384-5

Keywords

Navigation