Skip to main content
Log in

Purification and characterization of 5′-methylthioadenosine phosphorylase from the hyperthermophilic archaeon Pyrococcus furiosus

Substrate specificity and primary structure analysis

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

5′-Methylthioadenosine phosphorylase (MTAP) was purified to homogeneity from the hyperthermophilic archaeon Pyrococcus furiosus. The protein is a homoexamer of 180 kDa. The enzyme is highly thermoactive, with an optimum temperature of 125 °C, and extremely thermostable, retaining 98% residual activity after 5 h at 100 °C and showing a half-life of 43 min at 130 °C. In the presence of 100 mM phosphate, the apparent T m (137 °C) increases to 139 °C. The enzyme is extremely stable to proteolytic cleavage and after incubation with protein denaturants, detergents, organic solvents, and salts even at high temperature. Thiol groups are not involved in the catalytic process, whereas disulfide bond(s) are present, since incubation with 0.8 M dithiothreitol significantly reduces the thermostability of the enzyme. N-Terminal sequence analysis of the purified enzyme is 100% identical to the predicted amino acid sequence of the gene PF0016 from the partially sequenced P. furiosus genome. The deduced amino acid sequence of the gene revealed a high degree of identity (52%) with human MTAP. Nevertheless, unlike human MTAP, MTAP from P. furiosus is not specific for 5′-methylthioadenosine, since it phosphorolytically cleaves adenosine, inosine, and guanosine. The calculated k cat/K m values for 5′-methylthioadenosine and adenosine, about 20-fold higher than for inosine and guanosine, indicate that 6-amino purine nucleosides are preferred substrates of MTAP from P. furiosus. The structural features and the substrate specificity of MTAP from P. furiosus document that it represents a 5′-methylthioadenosine-metabolizing enzyme different from those previously characterized among Archaea, Bacteria, and Eukarya. The functional and structural relationships among MTAP from P. furiosus, human MTAP, and two putative MTAPs from P. furiosus and Sulfolobus solfataricus are discussed here for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a, b
Fig. 3a, b
Fig. 4.
Fig. 5a–c.
Fig. 6

Similar content being viewed by others

References

  • Adams MWW, Kelly RM (1988) Finding and using hyperthermophilic enzymes. TIBTECH 16:329–332

    Google Scholar 

  • Appleby TC, Erion MD, Ealick SE (1999) The structure of human 5′-deoxy-5′-methylthioadenosine phosphorylase at 1.7 A° resolution provides insights into substrate binding and catalysis. Structure 7:629–641

    Article  CAS  PubMed  Google Scholar 

  • Appleby TC, Mathews II, Porcelli M, Cacciapuoti G, Ealick SE (2001) Three-dimensional structure of a hyperthermophilic 5′-deoxy-5′-methylthioadenosine phosphorylase from Sulfolobus solfataricus . J Biol Chem 42:39232–39242

    Article  Google Scholar 

  • Bose R, Yamada EW (1974) Uridine phosphorylase, molecular properties and mechanism of catalysis. Biochemistry 13:2051–2056

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brown SH, Kelly RM (1993) Characterization of amylolytic enzymes, having both (alpha)-1,4 and (alpha)-1,6 hydrolytic activity, from the thermophilic Archaea Pyrococcus furiosus and Thermococcus litoralis Appl Environ Microbiol 59:2614–2621

    CAS  Google Scholar 

  • Bzowska A, Kulikowska E, Shugar D (2000) Purine nucleoside phosphorylases: properties, functions and clinical aspects. Pharmacol Ther 88:349–425

    Article  CAS  PubMed  Google Scholar 

  • Cacciapuoti G, Porcelli M, De Rosa M, Gambacorta A, Bertoldo C, Zappia V (1991) S-adenosylmethionine decarboxylase from the thermophilic archaebacterium Sulfolobus solfataricus: purification, molecular properties and studies on the covalently-bound pyruvate. Eur J Biochem 199:395–400

    CAS  PubMed  Google Scholar 

  • Cacciapuoti G, Porcelli M, Bertoldo C, De Rosa M, Zappia V (1994) Purifcation and characterization of extremely thermophilic and thermostable 5′-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus. Purine nucleodide phosphorylase activity and evidence for intersubunit disulfide bonds. J Biol Chem 269:24762–24769

    CAS  PubMed  Google Scholar 

  • Cacciapuoti G, Servillo L, Moretti MA, Porcelli M (2001) Conformational changes and stabilization induced by phosphate binding to 5′-methylthioadenosine phosphorylase from the thermophilic archaeon Sulfolobus solfataricus. Extremophiles 5:295–302

    Article  CAS  PubMed  Google Scholar 

  • Choi I-G, Bang W-G, Kim S-H, Yu YG (1999) Extremely thermostable serine-type protease from Aquifex pyrophilus. Molecular cloning, expression and characterization. J Biol Chem 274:881–888

    CAS  PubMed  Google Scholar 

  • Consalvi V, Chiaraluce R, Politi L, Vaccaro R, De Rosa M, Scandurra R (1991) Extremely thermostable gluramate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Eur J Biochem 202:1189–1196

    CAS  PubMed  Google Scholar 

  • Cort JR, Mariappan SV, Kim C-Y, Park MS, Peat TS, Waldo GS, Terwillger TC, Kennedy MA (2001) Solution structure of Pyrobaculum aerophilum DsrC, an archaeal homologue of the γ-subunit of dissimilatory sulfite reductase. Eur J Biochem 268:5842–5849

    Article  CAS  PubMed  Google Scholar 

  • Daniel RM, Dines M, Petack HH (1996) The denaturation and degradation of stable enzymes at high temperatures. Biochem J 317:1–11

    CAS  PubMed  Google Scholar 

  • De Rosa M, Gambacorta A, Bu'Lock JD (1975) Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius. J Gen Microbiol 86:156–164

    PubMed  Google Scholar 

  • Della Ragione F, Cartenì-Farina M, Porcelli M, Cacciapuoti G, Zappia V (1981) High-performance liquid chromatographic analysis of 5′-methylthioadenosine in rat tissues. J Chromatogr 226:243–249

    PubMed  Google Scholar 

  • Della Ragione F, Porcelli M, Cartenì-Farina M, Zappia V, Pegg AE (1985) Escherichia coli S-adenosylhomocysteine/5′-methyl-thioadenosine nucleosidase: purification, substrate specificity and mechanism of action. Biochem J 232:335–341

    PubMed  Google Scholar 

  • Della Ragione F, Cartenì-Farina M, Gragnianiello V, Schettino MI, Zappia V (1986) Purification and characterization of 5′-deoxy-5′-methylthioadenosine phosphorylase from human placenta. J Biol Chem 261:12324–12329

    PubMed  Google Scholar 

  • Della Ragione F, Oliva A, Gragnianiello V, Russo GL, Palumbo R, Zappia V (1990) Physicochemical and immunological studies on mammalian 5′-deoxy-5′-methylthioadenosine phosphorylase. J Biol Chem 265:6241–6246

    PubMed  Google Scholar 

  • Faraone Mennella MR, Gambacorta A, Nicolaus B, Farina B (1998) Purification and biochemical characterization of a poly(ADP-ribose) polymearse-like enzyme from the thermophilic archaeon Sulfolobus solfataricus. Biochem J 335:441–447

    PubMed  Google Scholar 

  • Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch Microbiol 145:56–61

    CAS  Google Scholar 

  • Guagliardi A, de Pascale D, Cannio R, Nobile V, Bartolucci S, Rossi M (1995) The purification cloning, and high level expression of a glutaredoxin-like protein from the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem 270:5748–5755

    Article  CAS  PubMed  Google Scholar 

  • Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multipkle sequence alignment of a microcomputer. Gene 73:237–244

    CAS  PubMed  Google Scholar 

  • Jensen KF, Nygaard P (1975) Purine nucleoside phosphorylase from Escherichia coli and Salmonella typhimurium. Purification and some properties. Eur J Biochem 51:253–256

    CAS  PubMed  Google Scholar 

  • Koch R, Zobiowski P, Spreinat A, Antranikian G (1990) Extremely thermostable amylolytic enzymes from the archaeobacterium Pyrococcus furiosus. FEMS Microbiol Lett 71:21–26

    CAS  Google Scholar 

  • Koellner G, Luic M, Shugar D, Saenger W, Bzowska A (1997) Crystal structure of calf spleen purine nucleoside phosphorylase in a a complex with hypoxanthine at 2.15 A° resolution. J Mol Biol 265:202–216

    Article  CAS  PubMed  Google Scholar 

  • Koellner G, Bzowska A, Wielgus-Kutrowska B, Luic M, Steiner T, Saenger W, Stepinski J (2002) Open and closed conformation of E. coli purine nucleoside phosphorylase active center and implications for catalytic mechanism. J Mol Biol 18:351–371

    Article  Google Scholar 

  • Kumar S, Nussinov R (2001) How do thermophilic proteins deal with heat? Cell Mol Life Sci 58:1216–1233

    CAS  PubMed  Google Scholar 

  • Mozhaev VV, Berezin IV, Martinek K (1988) Structure-stability relationship in proteins: fundamental tasks and strategy for the development of stabilized enzyme catalysts for biotechnology. CRC Crit Rev Biochem 23:235–281

    CAS  PubMed  Google Scholar 

  • Pegg AE, Williams-Ashman HG (1969) Phosphate-stimulated breakdown of 5′-methylthioadenosine by rat ventral prostate. Biochem J 115:241–247

    Google Scholar 

  • Porcelli M, Cacciapuoti G, Fusco S, Iacomino G, Gambacorta A, De Rosa M, Zappia V (1993) S-adenosylhomocysteine hydrolase from the thermophilic archaeon Sulfolobus solfataricus: purification, physico-chemical and immunological properties. Biochim Biophys Acta 1164:179–188

    CAS  PubMed  Google Scholar 

  • Ragone R, Facchiano F, Cacciapuoti G, Porcelli M, Colonna G (1992) Effect of temperature on the propylamine transferase from Sulfolobus solfataricus, an extreme thermophilic archaebacterium. 2. Denaturation and structural stability. Eur J Biochem 204:483–490

    CAS  PubMed  Google Scholar 

  • Savarese TM, Crabcree GW, Parks RE Jr (1979) Reaction of 5′-dexyadenosine and related analogs with the 5′-methylthioadenosine cleaving enzyme of sarcoma 180 cells, a possible chemotherapeutic target enzyme. Biochem Pharmacol 28:2227–2230

    Article  CAS  PubMed  Google Scholar 

  • Schlenk F, Ehninger DJ (1964) Observations on the metabolism of 5′-methylthioadenosine. Arch Biochem Biophys 106:95–100

    CAS  Google Scholar 

  • Sterner R, Liebl W (2001) Thermophilic adaptation of proteins. Crit Rev Biochem Mol Biol 36:39–106

    CAS  PubMed  Google Scholar 

  • Toorchen D, Miller RL (1991) Purification and characterization of 5′-deoxy-5′-methylthioadenosine (MTA) phosphorylase from human liver. Biochem Pharmacol 41:2023–2030

    Article  CAS  PubMed  Google Scholar 

  • Toth EA, Worby C, Dixon JE, Goedken ER, Marqusee S, Yeates TO (2000) The crystal structure of adenylosuccinate lyase from Pyrobaculum aerophilum reveals an intracellular protein with three disulfide bonds. J Mol Biol 301:433–450

    Article  CAS  PubMed  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    CAS  PubMed  Google Scholar 

  • Vogt G, Woell S, Argos P (1997) Protein thermal stability, hydrogen bonds and ion pairs. J Mol Biol 269:631–643

    Article  CAS  PubMed  Google Scholar 

  • Weber K, Pringle JR, Osborn M (1972) Measurement of molecular weight by electrophoresis on SDS-acrylamide gel. Methods Enzymol 260:3–27

    Google Scholar 

  • Williams-Ashman HG, Seidenfeld J, Galletti P (1982) Trends in the biochemical pharmacology of 5′-deoxy-5′-methylthioadenosine. Biochem Pharmacol 31:277–288

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr. V. Carratore, CNR, Naples, Italy, for performing NH2-terminal analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Cacciapuoti.

Additional information

Communicated by G. Antranikian

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cacciapuoti, G., Bertoldo, C., Brio, A. et al. Purification and characterization of 5′-methylthioadenosine phosphorylase from the hyperthermophilic archaeon Pyrococcus furiosus . Extremophiles 7, 159–168 (2003). https://doi.org/10.1007/s00792-002-0307-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-002-0307-2

Keywords

Navigation