Advertisement

Computing and Visualization in Science

, Volume 1, Issue 1, pp 15–25 | Cite as

Composite finite elements for problems containing small geometric details

Part II: Implementation and numerical results
  • W. Hackbusch
  • S.A. Sauter

Abstract.

In this paper, we will present efficient strategies how composite finite elements can be realized for the discretization of PDEs on domains containing small geometric details. In contrast to standard finite elements, the minimal dimension of this new class of finite element spaces is completely independent of the number of geometric details of the physical domains. Hence, it allows coarse level discretization of PDEs which can be used, e.g., preferably for multi-grid methods and homogenization of PDEs in non-periodic situations.

Keywords

Physical Domain Efficient Strategy Element Space Coarse Level Level Discretization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • W. Hackbusch
    • 1
  • S.A. Sauter
    • 1
  1. 1. Lehrstuhl Praktische Mathematik, Universität Kiel, Hermann-Rodewald-Strasse 3, D-24098 Kiel, Germany (e-mail: sas@numerik.uni-kiel.de) DE

Personalised recommendations