Advertisement

Hierarchical matrix arithmetic with accumulated updates

  • Steffen BörmEmail author
Special Issue CS Symposium 2016
  • 11 Downloads

Abstract

Hierarchical matrices can be used to construct efficient preconditioners for partial differential and integral equations by taking advantage of low-rank structures in triangular factorizations and inverses of the corresponding stiffness matrices. The setup phase of these preconditioners relies heavily on low-rank updates that are responsible for a large part of the algorithm’s total run-time, particularly for matrices resulting from three-dimensional problems. This article presents a new algorithm that significantly reduces the number of low-rank updates and can shorten the setup time by 50% or more.

Notes

References

  1. 1.
    Baur, U.: Low rank solution of data-sparse Sylvester equations. Numer. Linear Algebra Appl. 15, 837–851 (2008)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bebendorf, M., Hackbusch, W.: Existence of \({{\cal{H}}}\)-matrix approximants to the inverse FE-matrix of elliptic operators with \(L^\infty \)-coefficients. Numer. Math. 95, 1–28 (2003)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Börm, S.: \({\cal{H}}^2\)-matrix arithmetics in linear complexity. Computing 77(1), 1–28 (2006)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Börm, S.: Approximation of solution operators of elliptic partial differential equations by \({\cal{H}}\)- and \({\cal{H}}^2\)-matrices. Numer. Math. 115(2), 165–193 (2010)MathSciNetGoogle Scholar
  6. 6.
    Börm, S.: Efficient Numerical Methods for Non-local Operators: \({\cal{H}}^2\)-Matrix Compression, Algorithms and Analysis. Volume 14 of EMS Tracts in Mathematics. EMS, Berlin (2010)zbMATHGoogle Scholar
  7. 7.
    Börm, S., Christophersen, S.: Approximation of integral operators by Green quadrature and nested cross approximation. Numer. Math. 133(3), 409–442 (2016)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Börm, S., Grasedyck, L.: Low-rank approximation of integral operators by interpolation. Computing 72, 325–332 (2004)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Börm, S., Grasedyck, L.: Hybrid cross approximation of integral operators. Numer. Math. 101, 221–249 (2005)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ewald, P.P.: Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 369(3), 253–287 (1920)zbMATHGoogle Scholar
  11. 11.
    Faustmann, M., Melenk, J.M., Praetorius, D.: \({\cal{H}}\)-matrix approximability of the inverse of FEM matrices. Numer. Math. 131(4), 615–642 (2015)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Gavrilyuk, I., Hackbusch, W., Khoromskij, B.N.: \({\cal{H}}\)-matrix approximation for the operator exponential with applications. Numer. Math. 92, 83–111 (2002)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Gavrilyuk, I., Hackbusch, W., Khoromskij, B.N.: Data-sparse approximation to operator-valued functions of elliptic operator. Math. Comput. 73, 1107–1138 (2004)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Grasedyck, L.: Existence of a low-rank or \(\cal{H}\)-matrix approximant to the solution of a Sylvester equation. Numer. Linear Algebra Appl. 11, 371–389 (2004)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Grasedyck, L., Hackbusch, W.: Construction and arithmetics of \({{\cal{H}}}\)-matrices. Computing 70, 295–334 (2003)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Grasedyck, L., Hackbusch, W., Khoromskij, B.N.: Solution of large scale algebraic matrix Riccati equations by use of hierarchical matrices. Computing 70, 121–165 (2003)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Grasedyck, L., Kriemann, R., LeBorne, S.: Parallel black box \({\cal{H}}\)-LU preconditioning for elliptic boundary value problems. Comput. Vis. Sci. 11, 273–291 (2008)MathSciNetGoogle Scholar
  18. 18.
    Grasedyck, L., Kriemann, R., LeBorne, S.: Domain decomposition based \({\cal{H}}\)-LU preconditioning. Numer. Math. 112(4), 565–600 (2009)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Grasedyck, L., LeBorne, S.: \(\cal{H}\)-matrix preconditioners in convection-dominated problems. SIAM J. Math. Anal. 27(4), 1172–1183 (2006)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Greengard, L., Rokhlin, V.: On the numerical solution of two-point boundary value problems. Commun. Pure Appl. Math. 44(4), 419–452 (1991)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Hackbusch, W.: A sparse matrix arithmetic based on \({\cal{H}}\)-matrices part I: introduction to \({\cal{H}}\)-matrices. Computing 62(2), 89–108 (1999)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Hackbusch, W.: Hierarchical Matrices: Algorithms and Analysis. Springer, Berlin (2015)zbMATHGoogle Scholar
  24. 24.
    Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54(4), 463–491 (1989)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Lintner, M.: The eigenvalue problem for the 2d Laplacian in \({{\cal{H}}}\)-matrix arithmetic and application to the heat and wave equation. Computing 72, 293–323 (2004)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60, 187–207 (1985)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Sauter, S.A.: Variable order panel clustering. Computing 64, 223–261 (2000)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations