Skip to main content
Log in

Numerical solution of a phase field model for polycrystallization processes in binary mixtures

  • Original Article
  • Published:
Computing and Visualization in Science

Abstract

We consider the numerical solution of a phase field model for polycrystallization in the solidification of binary mixtures in a domain \( \varOmega \subset \mathbb {R}^2\). The model is based on a free energy in terms of three order parameters: the local orientation \(\varTheta \) of the crystals, the local crystallinity \(\phi \), and the concentration c of one of the components of the binary mixture. The equations of motion are given by an initial-boundary value problem for a coupled system of partial differential equations consisting of a regularized second order total variation flow in \( \varTheta \), an \(L^2\) gradient flow in \(\phi \), and a \(W^{1,2}(\varOmega )^*\) gradient flow in c. Based on an implicit discretization in time by the backward Euler scheme, we suggest a splitting method such that the three semidiscretized equations can be solved separately and prove existence of a solution. As far as the discretization in space is concerned, the fourth order Cahn–Hilliard type equation in c is taken care of by a \(\hbox {C}^0\) Interior Penalty Discontinuous Galerkin approximation which has the advantage that the same finite element space can be used as well for the spatial discretization of the equations in \( \varTheta \) and \( \phi \). The fully discretized equations represent parameter dependent nonlinear algebraic systems with the discrete time as a parameter. They are solved by a predictor corrector continuation strategy featuring an adaptive choice of the time-step. Numerical results illustrate the performance of the suggested numerical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andreu, F., Caselles, V., Mazón, J.M.: Existence and uniqueness of solutions for a parabolic quasilinear problem for linear growth functionals with L1 data. Math. Ann. 322, 139–206 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andreu-Vaillo, F., Caselles, V., Mazón, J.M.: Parabolic Quasilinear Equations Minimizing Linear Growth Functionals. Birkhäuser, Basel (2004)

    Book  MATH  Google Scholar 

  3. Andreu, F., Mazòn, J.M., Segura, S., Toledo, J.: Existence and uniqueness for a degenerate parabolic equation with L1-data. Trans. Am. Math. Soc. 315, 285–306 (1999)

    Article  MATH  Google Scholar 

  4. Baldi, A.: Weighted BV functions. Houst. J. Math. 27, 1–23 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Bartels, S.: Methods for Nonlinear Partial Differential Equations. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  6. Bartkowiak, L., Pawlow, I.: The Cahn–Hilliard–Gurtin system coupled with elasticity. Control Cybern. 34, 1005–1043 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Bebendorf, M.: A note on the Poincaré inequality for convex domains. Z. Anal. Anwend. 22, 751–756 (2003)

    Article  MATH  Google Scholar 

  8. Bellettini, G., Novaga, M., Paolini, M.: On a crystalline variational problem, part I: first variation and global L1-regularity. Arch. Ration. Mech. Anal. 157, 165–191 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bellettini, G., Novaga, M., Paolini, M.: On a crystalline variational problem, part II: BV regularity and structure of minimizers on facets. Arch. Ration. Mech. Anal. 157, 193–217 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonetti, E., Colli, P., Dreyer, W., Giliardi, G., Schimperna, G., Sprekels, J.: On a model for phase separation in binary alloys driven by mechanical effects. Physica D 165, 48–65 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Braess, D., Hoppe, R.H.W., Linsenmann, C.: A two-energies principle for the biharmonic equation and an a posteriori error estimator for an interior penalty discontinuous Galerkin approximation. ESAIM: M2AN (2016). https://doi.org/10.1051/m2an/2016074

    Google Scholar 

  12. Brenner, S.C., Sung, L.-Y.: \(C^0\) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22(23), 83–118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Burger, M., Frick, K., Osher, S., Scherzer, O.: Inverse total variation flow. Multiscale Model. Simul. 6, 365–395 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carrive, M., Miranville und, A., Piétrus, A.: The Cahn–Hilliard equation for deformable elastic continua. Adv. Math. Sci. Appl. 10, 539–569 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Carrive, M., Miranville, A., Piétrus, A., Rakotoson, J.: The Cahn-Hilliard equation for anisotropic deformable elastic continuum. Appl. Math. Lett. 12, 23–28 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Deuflhard, P.: Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms. Springer, Berlin (2004)

    MATH  Google Scholar 

  17. Engel, G., Garikipati, K., Hughes, T.J.R., Larson, M.G., Mazzei, L., Taylor, R.L.: Continuous/discontinuous finite element approximations of fourth order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191, 3669–3750 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Feng, X., von Oehsen, M., Prohl, A.: Rate of convergence of regularization procedures and finite element approximations for the total variation flow. Numer. Math. 100, 441–456 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Garcke, H.: On Cahn–Hilliard systems with elasticity. Proc. R. Soc. Edinb. Sect. A Math. 133, 307–331 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Garcke, H.: On a Cahn–Hilliard system for phase separation with elastic misfit. Ann. Inst. Henri Poincaré (C) Nonlinear Anal. 22, 165–185 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Basel (1984)

    Book  MATH  Google Scholar 

  22. Gránásy, L., Börzsönyi, L., Pusztai, T.: Nucleation and bulk crystallization in binary phase field theory. Phys. Rev. Lett. 88, 206105 (2002)

    Article  MATH  Google Scholar 

  23. Gránásy, L., Börzsönyi, L., Pusztai, T.: Crystal nucleation and growth in binary phase-field theory. J. Cryst. Growth 237, 1813–1817 (2002)

    Article  MATH  Google Scholar 

  24. Gránásy, L., Pusztai, T., Börzsönyi, L., Warren, J.A., Douglas, J.F.: A general mechanism of polycrystalline growth. Nat. Mater. 3, 645–650 (2004)

    Article  Google Scholar 

  25. Gránásy, L., Pusztai, T., Warren, J.A.: Modeling polycrystalline solidification using phase field theory. J. Phys. Condens. Matter 16, R1205–R1235 (2004)

    Article  Google Scholar 

  26. Gránásy, L., Pusztai, T., Saylor, D., Warren, J.A.: Phase field theory of heterogeneous crystal nucleation. Phys. Rev. Lett. 98, 035703 (2007)

    Article  Google Scholar 

  27. Gránásy, L., Pusztai, T., Tegze, G., Warren, J.A., Douglas, J.F.: Growth and form of spherulites. Phys. Rev. E 72, 011605 (2004)

    Article  Google Scholar 

  28. Gránásy, L., Ratkai, L., Szallas, A., Korbuly, B., Toth, G., Környei, L., Pusztai, T.: Phase-field modeling of polycrystalline solidification: from needle crystals to spherulites: a review. Metall. Mater. Trans. A 45A, 1694–1719 (2014)

    Article  Google Scholar 

  29. Gurtin, M.E.: Generalised Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Physica D 92, 178–192 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hoppe, R.H.W., Linsenmann, C.: An adaptive Newton continuation strategy for the fully implicit finite element immersed boundary method. J. Comput. Phys. 231, 4676–4693 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kobayashi, R., Warren, J.A., Carter, W.C.: A continuum model of grain boundaries. Phys. D Nonlinear Phenom. 140, 141–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Larché, F.C., Cahn, J.W.: The effect of self-stress on diffusion in solids. Acta Metall. 30, 1835–1845 (1982)

    Article  Google Scholar 

  33. Larché, F.C., Cahn, J.W.: The interactions of composition and stress in crystalline solids. Acta Metall. 33, 331–357 (1985)

    Article  Google Scholar 

  34. Larché, F.C., Cahn, J.W.: Phase changes in a thin plate with non-local self-stress effects. Acta Metall. 40, 947–955 (1992)

    Article  Google Scholar 

  35. Leo, P.H., Lowengrub, J.S., Jou, H.J.: A diffuse interface model for microstructural evolution in elastically stressed solids. Acta Mater. 46, 2113–2130 (1998)

    Article  Google Scholar 

  36. Miranville, A.: Some generalizations of Cahn–Hilliard equation. Asymptot. Anal. 22, 235–259 (2000)

    MathSciNet  MATH  Google Scholar 

  37. Miranville, A.: Long-time behavior of some models of Cahn–Hilliard equations in deformable continua. Nonlinear Anal. Real World Appl. 2, 273–304 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Miranville, A.: Consistent models of Cahn–Hilliard–Gurtin equations with Neumann boundary conditions. Physica D 158, 233–257 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Miranville, A.: Generalized Cahn–Hilliard equations based on a microforce balance. J. Appl. Math. 4, 165–185 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Moll, S., Shirakawa, K.: Existence of solutions to the Kobayashi–Warren–Carter system. Calc. Var. Partial Differ. Equ. 51, 621–656 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Moll, S., Shirakawa, K., Watanabe, H.: Energy dissipative solutions to the Kobayashi–Warren–Carter system. Nonlinearity 30, 2752–2784 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Payne, L.E., Weinberger, H.F.: An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5, 286–292 (1960)

    Article  MATH  Google Scholar 

  43. Provatas, N., Elder, K.: Phase-Field Methods in Materials Science. Wiley, Weinheim (2010)

    Book  Google Scholar 

  44. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1986)

    MATH  Google Scholar 

  45. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tartar, L.: Introduction to Sobolev Spaces and Interpolation Theory. Springer, Berlin (2007)

    MATH  Google Scholar 

  47. Warren, J.A., Kobayashi, R., Carter, W.C.: Modeling grain boundaries using a phase field technique. J. Cryst. Growth 211, 18–20 (2000)

    Article  Google Scholar 

  48. Wells, G.N., Kuhl, E., Garikipati, K.: A discontinuous Galerkin method for the Cahn–Hilliard equation. J. Comput. Phys. 218, 860–877 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald H. W. Hoppe.

Additional information

Communicated by Gabriel Wittum.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J. J. Winkle: The authors acknowledge support by the NSF Grant DMS-1520886.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoppe, R.H.W., Winkle, J.J. Numerical solution of a phase field model for polycrystallization processes in binary mixtures. Comput. Visual Sci. 20, 13–27 (2019). https://doi.org/10.1007/s00791-018-00307-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-018-00307-5

Navigation