Skip to main content
Log in

Exploiting multilevel Toeplitz structures in high dimensional nonlocal diffusion

  • Original Article
  • Published:
Computing and Visualization in Science

Abstract

We present a finite element implementation for the steady-state nonlocal Dirichlet problem with homogeneous volume constraints. Here, the nonlocal diffusion operator is defined as integral operator characterized by a certain kernel function. We assume that the domain is an arbitrary d-dimensional hyperrectangle and the kernel is translation and reflection invariant. Under these assumptions, we carefully analyze the structure of the stiffness matrix resulting from a continuous Galerkin method with \(Q_1\) elements and exploit this structure in order to cope with the curse of dimensionality associated to nonlocal problems. For the purpose of illustration we choose a particular kernel, which is related to space-fractional diffusion and present numerical results in 1d, 2d and for the first time also in 3d.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Acosta, G., Bersetche, F.M., Borthagaray, J.P.: A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian. Comput. Math. Appl. (2017). https://doi.org/10.1016/j.camwa.2017.05.026. http://www.sciencedirect.com/science/article/pii/S0898122117303310

  2. Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55(2), 472–495 (2017). https://doi.org/10.1137/15M1033952

    Article  MathSciNet  MATH  Google Scholar 

  3. Bass, R.F., Kassmann, M., Kumagai, T.: Symmetric jump processes: localization, heat kernels and convergence. Ann. Inst. H. Poincaré Probab. Stat. 46(1), 59–71 (2010). https://doi.org/10.1214/08-AIHP201

    Article  MathSciNet  MATH  Google Scholar 

  4. Burkovska, O., Gunzburger, M.: Regularity and approximation analyses of nonlocal variational equality and inequality problems. arXiv preprint. arXiv:1804.10282 (2018)

  5. Capizzano, S.S., Tyrtyshnikov, E.E.: Any circulant-like preconditioner for multilevel matrices is not superlinear. SIAM J. Matrix Anal. Appl. 21, 431–439 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chan, T.F.: An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci. Stat. Comput. 9(4), 766–771 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, J., Li, T.L., Anitescu, M.: A parallel linear solver for multilevel Toeplitz systems with possibly several right-hand sides. Parallel Comput. 40(8), 408–424 (2014). https://doi.org/10.1016/j.parco.2014.06.004. http://www.sciencedirect.com/science/article/pii/S0167819114000672

  8. Chen, M., Deng, W.: Convergence proof for the multigrid method of the nonlocal model. arXiv preprint. arXiv:1605.05481 (2016)

  9. Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54(4), 667–696 (2012). https://doi.org/10.1137/110833294

    Article  MathSciNet  MATH  Google Scholar 

  10. Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math. Models Methods Appl. Sci. 23(03), 493–540 (2013). https://doi.org/10.1142/S0218202512500546

    Article  MathSciNet  MATH  Google Scholar 

  11. Du, Q., Zhou, K.: Mathematical analysis for the peridynamic nonlocal continuum theory. ESAIM: M2AN 45(2), 217–234 (2011). https://doi.org/10.1051/m2an/2010040

  12. D’Elia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 66(7), 1245–1260 (2013). https://doi.org/10.1016/j.camwa.2013.07.022. http://www.sciencedirect.com/science/article/pii/S0898122113004707

  13. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2009). https://doi.org/10.1137/070698592

    Article  MathSciNet  MATH  Google Scholar 

  14. Elman, Howard, Silvester, David, Wathen, Andy: Finite Elements and Fast Iterative Solvers. Oxford University Press, New York (2005)

    MATH  Google Scholar 

  15. Barlow, Martin T., Bass, Richard F., Chen, Zhen-Qing, Krassmann, Moritz: Non-local Dirichlet forms and symmetric jump processes. Trans. Am. Math. Soc. 361(4), 1963–1999 (2009). https://doi.org/10.1090/S0002-9947-08-04544-3

    Article  MathSciNet  MATH  Google Scholar 

  16. Nocedale, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999). https://doi.org/10.1007/978-0-387-40065-5

    Book  Google Scholar 

  17. Olshanskii, M.A., Tyrtyshnikov, E.E.: Iterative methods for linear systems: theory and applications. SIAM (2014)

  18. Olshevsky, V., Oseledets, I., Tyrtyshnikov, E.: Tensor properties of multilevel Toeplitz and related matrices. Linear Algebra Appl. 412(1), 1–21 (2006). https://doi.org/10.1016/j.laa.2005.03.040. http://www.sciencedirect.com/science/article/pii/S002437950500296X

  19. Pang, H.K., Sun, H.W.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231(2), 693–703 (2012). https://doi.org/10.1016/j.jcp.2011.10.005. http://www.sciencedirect.com/science/article/pii/S0021999111005985

  20. Peyré, G., Bougleux, S., Cohen, L.: Non-local regularization of inverse problems, pp. 57–68. Springer Berlin Heidelberg, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_5

  21. Rosasco, L., Belkin, M., Vito, E.D.: On learning with integral operators. J. Mach. Learn. Res. 11, 905–934 (2010). http://dl.acm.org/citation.cfm?id=1756006.1756036

  22. Serra-Capizzano, S.: Toeplitz matrices: spectral properties and preconditioning in the cg method (2007)

  23. Wang, H., Basu, T.S.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34(5), A2444–A2458 (2012). https://doi.org/10.1137/12086491X

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, H., Du, N.: A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation. J. Comput. Phys. 253, 50–63 (2013). https://doi.org/10.1016/j.jcp.2013.06.040. http://www.sciencedirect.com/science/article/pii/S0021999113004701

  25. Wang, H., Wang, K., Sircar, T.: A direct o(nlog2n) finite difference method for fractional diffusion equations. J. Comput. Phys. 229(21), 8095–8104 (2010). https://doi.org/10.1016/j.jcp.2010.07.011. http://www.sciencedirect.com/science/article/pii/S0021999110003943

  26. Ye, K., Lim, L.H.: Algorithms for structured matrix-vector product of optimal bilinear complexity. In: 2016 IEEE Information Theory Workshop (ITW), pp. 310–314 (2016). https://doi.org/10.1109/ITW.2016.7606846

  27. Zhou, K., Du, Q.: Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions. SIAM J. Numer. Anal. 48(5), 1759–1780 (2010). https://doi.org/10.1137/090781267

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author has been supported by the German Research Foundation (DFG) within the Research Training Group 2126: “Algorithmic Optimization”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Vollmann.

Additional information

Communicated by Gabriel Wittum.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vollmann, C., Schulz, V. Exploiting multilevel Toeplitz structures in high dimensional nonlocal diffusion. Comput. Visual Sci. 20, 29–46 (2019). https://doi.org/10.1007/s00791-018-00306-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-018-00306-6

Keywords

Navigation