Skip to main content

A parallel multigrid method for constrained minimization problems and its application to friction, contact, and obstacle problems

Abstract

The parallel solution of constrained minimization problems requires special care to be taken with respect to the information transfer between the different subproblems. Here, we present a nonlinear decomposition approach which employs an additional nonlinear correction step along the processor interfaces. Our approach is generic in the sense that it can be applied to a wide class of minimization problems with strongly local nonlinearities, including even nonsmooth minimization problems. We also describe the implementation of our nonlinear decomposition method in the object oriented library ObsLib \(++\). The flexibility of our approach and its implementation is presented along different problem classes as obstacle problems, frictional contact problems and biomechanical applications. For the same examples, number of iterations, computation time, and parallelization speedup are measured, and the results demonstrate that the implementation scales reasonably well up to 4096 processors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Badea, L.: Convergence rate of a multiplicative schwarz method for strongly nonlinear variational inequalities. In: Barbu, V., Lasiecka, I., Tiba, D., Varsan, C. (eds.) Analysis and Optimization of Differential Systems. IFIP The International Federation for Information Processing, vol. 121, pp. 31–41. Springer, Berlin (2003)

  2. 2.

    Badea, L.: Global convergence rate of a standard multigrid method for variational inequalities. IMA J. Numer. Anal. 34(1), 197–216 (2014). doi:10.1093/imanum/drs054

  3. 3.

    Badea, L., Tai, X.-C., Wang, J.: Convergence rate analysis of a multiplicative Schwarz method for variational inequalities. SIAM J. Numer. Anal. 41(3), 1052–1073 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Badea, L.: Multigrid methods for some quasi-variational inequalities. Discrete Contin. Dyn. Syst. Ser. S 6(6), 1457–1471 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Badea, L., Krause, R.: One- and two-level schwarz methods for variational inequalities of the second kind and their application to frictional contact. Numer. Math. 120(4), 573–599 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Badea, L., Wang, J.: An additive Schwarz method for variational inequalities. Math. Comput. 69(232), 1341–1354 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Bastian, P., Birken, K., Johannsen, K., Lang, S., Neuß, N., Rentz-Reichert, H., Wieners, C.: UG—a flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1, 27–40 (1997)

    Article  MATH  Google Scholar 

  8. 8.

    Berrenberg, S., Krause, R.: Efficient parallel simulation of biphasic materials in biomechanics. In: Sixth International Congress on Industrial Applied Mathematics (ICIAM07) and GAMM Annual Meeting, Zürich 2007, vol. 7(1) (2007)

  9. 9.

    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, Hoboken (1983)

    MATH  Google Scholar 

  10. 10.

    Ehlers, W., Markert, B.: A linear viscoelastic biphasic model for soft tissues based on the theory of porous media. J. Biomech. Eng. Trans. ASME 123, 418–424 (2001)

    Article  Google Scholar 

  11. 11.

    Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North Holland, Amsterdam (1976)

    MATH  Google Scholar 

  12. 12.

    Ferris, M.C., Mangasarian, O.L.: Parallel variable distribution. SIAM J. Optim. 4(4), 815–832 (1994)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Frommer, A., Renaut, R.A.: Parallel space decomposition for minimization of nonlinear functionals. In: Yang, T. (ed.) Parallel Numerical Computation with Applications. Proceedings of the Workshop on Frontiers of Parallel Numerical Computations and Applications, Organized in the IEEE 7th Symposium on the Frontiers on Massively Parallel Computers (Frontiers ’99) at Annapolis, MD, USA, 20–25 February 1999. Kluwer Academic Publishers, Boston. Kluwer Int. Ser. Eng. Comput. Sci., vol. 515, pp. 53–61 (1999)

  14. 14.

    Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Series in Computational Physics. Springer, New York (1984)

    Book  Google Scholar 

  15. 15.

    Grillo, A., Giverso, C., Favino, M., Krause, R., Lampe, M., Wittum, G.: Mass transport in porous media with variable mass. In: Delgado, J.M.P.Q., Lima, A.G.B., Silva, M.V. (eds.) Numerical Analysis of Heat and Mass Transfer in Porous Media, Volume 27 of Advanced Structured Materials, pp. 27–61. Springer, Berlin (2012)

    Chapter  Google Scholar 

  16. 16.

    Groß, C., Krause, R.: A recursive trust-region method for non-convex constrained minimization. In: Domain Decomposition Methods in Science and Engineering XVIII, Volume 70 of Lecture Notes in Computational Science and Engineering, pp. 137–144, 09 (2009)

  17. 17.

    Groß, C., Krause, R.: On the convergence of recursive trust-region methods for multiscale non-linear optimization and applications to non-linear mechanics. SIAM J. Numer. Anal. 47(4), 3044–3069, 09 (2009)

  18. 18.

    Hüeber, S., Wohlmuth, B.: Equilibration techniques for solving contact problems with Coulomb friction. Comput. Methods Appl. Mech. Eng. 205–208, 29–45 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Hwang, F.-N., Cai, X.-C.: A parallel nonlinear additive Schwarz preconditioned inexact newton algorithm for incompressible Navier–Stokes equations. J. Comput. Phys. 204(2), 666–691 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Izi, R., Konyukhov, A., Schweizerhof, K.: Large penetration algorithm for 3D frictionless contact problems based on a covariant form. Comput. Methods Appl. Mech. Eng. 217220, 186–196 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity. SIAM, Philadelphia (1988)

    Book  MATH  Google Scholar 

  22. 22.

    Kornhuber, R., Gräser, C.: On preconditioned uzawa-type iterations for a saddle point problem with inequality constraints. In: Domain Decomposition Methods in Science and Engineering XVI, pp. 91–102 (2006)

  23. 23.

    Kornhuber, R.: Monotone multigrid methods for elliptic variational inequalities I. Numer. Math. 69, 167–184 (1994)

  24. 24.

    Kornhuber, R.: Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems. Teubner, Stuttgart (1997)

    MATH  Google Scholar 

  25. 25.

    Kornhuber, R.: On constrained Newton linearization and multigrid for variational inequalities. Numer. Math. 91, 699–721 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Kornhuber, R., Krause, R.: Adaptive multigrid methods for Signorini’s problem in linear elasticity. Comput. Vis. Sci. 4, 9–20 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Kornhuber, R., Krause, R.: Robust multigrid methods for vector-valued Allen–Cahn equations with logarithmic free energy. Comput. Vis. Sci. 9, 103–116 (2006)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Krause, R.: From inexact active set strategies to nonlinear multigrid methods. In: Wriggers, P., Nackenhorst, U. (eds.) Analysis and Simulation of Contact Problems, vol. 27. Springer, Berlin (2006)

    Chapter  Google Scholar 

  29. 29.

    Krause, R.: A non-smooth multiscale method for solving frictional two-body contact problems in 2D and 3D with multigrid efficiency. SIAM J. Sci. Comput. 31(2), 1399–1423 (2009)

    Article  MATH  Google Scholar 

  30. 30.

    Krause, R., Mohr, C.: Level set based multi-scale methods for large deformation contact problems. Appl. Numer. Math. 61(4), 428–442 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Krause, R., Walloth, M.: A time discretization scheme based on Rothe’s method for dynamical contact problems with friction. Comput. Methods Appl. Mech. Eng. 199, 1–19 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Krause, R., Walloth, M.: A family of space-time connecting discretization schemes for elastodynamic contact problems with local impact detection. Int. J. Numer. Methods Eng. 200, 3425–3438 (2011)

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Krause, R., Walloth, M.: Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme. Appl. Numer. Math. 62, 1393–1410 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter 17(1), R1–R62 (2004)

    Article  Google Scholar 

  35. 35.

    Schenk, O., Gärtner, K., Fichtner, W., Stricker, A.: Pardiso: a high-performance serial and parallel sparse linear solver in semiconductor device simulation. Future Gener. Comput. Syst. 18(1), 69–78 (2001). I. High Performance Numerical Methods and Applications. II. Performance Data Mining: Automated Diagnosis, Adaption, and Optimization

  36. 36.

    Suwannachit, A., Nackenhorst, U., Chiarello, R.: Stabilized numerical solution for transient dynamic contact of inelastic solids on rough surfaces. Comput. Mech. 49(6), 769–788 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    Tai, X.C.: Rate of convergence for some constraint decomposition methods for nonlinear variational inequalities. Numer. Math. 93, 755–786 (2003)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank C. Groß and T. Dickopf.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rolf Krause.

Additional information

Communicated by Gabriel Wittum.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krause, R., Rigazzi, A. & Steiner, J. A parallel multigrid method for constrained minimization problems and its application to friction, contact, and obstacle problems. Comput. Visual Sci. 18, 1–15 (2016). https://doi.org/10.1007/s00791-016-0267-1

Download citation

Keywords

  • Constrained minimization
  • Nonsmooth analysis
  • Multilevel methods
  • Domain decomposition

Mathematics Subject Classification

  • 15A15
  • 15A09
  • 15A23