Skip to main content
Log in

A generalized Suzuki–Trotter type method in optimal control of coupled Schrödinger equations

  • Published:
Computing and Visualization in Science

Abstract

A generalized Suzuki–Trotter (GST) method for the solution of an optimal control problem for quantum molecular systems is presented in this work. The control of such systems gives rise to a minimization problem with constraints given by a system of coupled Schrödinger equations. The computational bottleneck of the corresponding minimization methods is the solution of time-dependent Schrödinger equations. To solve the Schrödinger equations we use the GST framework to obtain an explicit polynomial approximation of the matrix exponential function. The GST method almost exclusively uses the action of the Hamiltonian and is therefore efficient and easy to implement for a variety of quantum systems. Following a first discretize, then optimize approach we derive the correct discrete representation of the gradient and the Hessian. The derivatives can naturally be expressed in the GST framework and can therefore be efficiently computed. By recomputing the solutions of the Schrödinger equations instead of saving the whole time evolution, we are able to significantly reduce the memory requirements of the method at the cost of additional computations. This makes first and second order optimization methods viable for large scale problems. In numerical experiments we compare the performance of different first and second order optimization methods using the GST method. We observe fast local convergence of second order methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ball, J.M., Marsden, J.E., Slemrod, M.: Controllability for distributed bilinear systems. SIAM J. Control Optim. 20(4), 575–597 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boscain, U., Caponigro, M., Chambrion, T., Sigalotti, M.: A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule. Commun. Math. Phys. 311(2), 423–455 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chambrion, T.: Periodic excitations of bilinear quantum systems. Automatica 48(9), 2040–2046 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)

    Article  Google Scholar 

  5. D’Alessandro, D.: Introduction to Quantum Control and Dynamics. Chapman & Hall/CRC, Boca Raton (2008)

    MATH  Google Scholar 

  6. Götschel, S., von Tycowicz, C., Polthier, K., Weiser, M.: Reducing memory requirements in scientific computing and optimal control. In: Carraro, T., Geiger, M., Koerkel, S., Rannacher, R. (eds.) Multiple Shooting and Time Domain Decomposition Methods (2014). Accepted for publication on 2014-09-18

  7. Hintermüller, M., Marahrens, D., Markowich, P.A., Sparber, C.: Optimal bilinear control of Gross–Pitaevskii equations. SIAM J. Control Optim. 51(3), 2509–2543 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hohenester, U., Rekdal, P.K., Borzì, A., Schmiedmayer, J.: Optimal quantum control of Bose–Einstein condensates in magnetic microtraps. Phys. Rev. A 75, 023,602 (2007)

    Article  Google Scholar 

  9. Ito, K., Kunisch, K.: Optimal bilinear control of an abstract Schrödinger equation. SIAM J. Control Optim. 46(1), 274–287 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kosloff, R., Rice, S., Gaspard, P., Tersigni, S., Tannor, D.: Wavepacket dancing: achieving chemical selectivity by shaping light pulses. Chem. Phys. 139(1), 201–220 (1989)

    Article  Google Scholar 

  11. Liebmann, M.: Ein effizienter Algorithmus zur numerischen Simulation von zeitabhängigen Problemen aus der Quantenmechanik. Diploma thesis, University of Graz, Institute for Mathematics and Scientific Computing (2005)

  12. Maday, Y., Turinici, G.: New formulations of monotonically convergent quantum control algorithms. J. Chem. Phys. 118(18), 8191–8196 (2003)

    Article  Google Scholar 

  13. Najfeld, I., Havel, T.F.: Derivatives of the matrix exponential and their computation. Adv. Appl. Math. 16(3), 321–375 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  15. Peirce, A.P., Dahleh, M.A., Rabitz, H.: Optimal control of quantum-mechanical systems: existence, numerical approximation, and applications. Phys. Rev. A (3) 37(12), 4950–4964 (1988)

  16. Shapiro, M., Brumer, P.: Quantum Control of Molecular Processes. Wiley, Hoboken (2012)

    MATH  Google Scholar 

  17. Sternberg, J., Griewank, A.: Reduction of storage requirement by checkpointing for time-dependent optimal control problems in ODEs. In: Bcker, M., Corliss, G., Naumann, U., Hovland, P., Norris, B. (eds.) Automatic Differentiation: Applications, Theory, and Implementations. Lecture Notes in Computational Science and Engineering, vol. 50, pp. 99–110. Springer, Berlin (2006)

  18. Suzuki, M.: Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 146(6), 319–323 (1990)

    Article  MathSciNet  Google Scholar 

  19. Suzuki, M.: General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys. 32(2), 400–407 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Turinici, G.: Beyond bilinear controllability: applications to quantum control. In: Kunisch, K., Leugering, G., Sprekels, J., Tröltzsch, F. (eds.) Control of Coupled Partial Differential Equations, vol. 155, pp. 293–309. Birkhäuser, Basel (2007)

  21. Turinici, G., Rabitz, H.: Quantum wavefunction controllability. Chem. Phys. 267(1–3), 1–9 (2001)

    Article  MATH  Google Scholar 

  22. von Winckel, G., Borì, A.: Computational techniques for a quantum control problem with \({H}^1\)-cost. Inverse Probl. 24(3), 034,007 (2008)

    Article  MathSciNet  Google Scholar 

  23. von Winckel, G., Borzì, A., Volkwein, S.: A globalized Newton method for the accurate solution of a dipole quantum control problem. SIAM J. Sci. Comput. 31(6), 4176–4203 (2009/2010)

  24. Zhu, W., Botina, J., Rabitz, H.: Rapidly convergent iteration methods for quantum optimal control of population. J. Chem. Phys. 108(5), 1953–1963 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The first author gratefully acknowledges support from the International Research Training Group IGDK1754, funded by the German Science Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Liebmann.

Additional information

Communicated by Volker Schulz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henneke, F., Liebmann, M. A generalized Suzuki–Trotter type method in optimal control of coupled Schrödinger equations. Comput. Visual Sci. 17, 277–293 (2015). https://doi.org/10.1007/s00791-016-0266-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-016-0266-2

Keywords

Mathematics Subject Classification

Navigation