Advertisement

Computing and Visualization in Science

, Volume 17, Issue 2, pp 79–88 | Cite as

Scalable shape optimization methods for structured inverse modeling in 3D diffusive processes

  • Arne Nägel
  • Volker Schulz
  • Martin SiebenbornEmail author
  • Gabriel Wittum
Article

Abstract

In this work we consider inverse modeling of the shape of cells in the outermost layer of human skin. We propose a novel algorithm that combines mathematical shape optimization with high-performance computing. Our aim is to fit a parabolic model for drug diffusion through the skin to data measurements. The degree of freedom is not the permeability itself, but the shape that distinguishes regions of high and low diffusivity. These are the cells and the space in between. The key part of the method is the computation of shape gradients, which are then applied as deformations to the finite element mesh, in order to minimize a tracking type objective function. Fine structures in the skin require a very high resolution in the computational model. We therefor investigate the scalability of our algorithm up to millions of discretization elements.

Keywords

Shape optimization High performance optimization Inverse problems 

Notes

Acknowledgments

This research is funded by the Deutsche Forschungsgemeinschaft (DFG) as part of the collaborative “Exasolvers” project in the Priority Program 1648 ”Software for Exascale Computing” (SPPEXA). The authors gratefully acknowledge the computing time granted by the HLRS, Stuttgart, Germany, and provided on the supercomputer Hermit.

References

  1. 1.
    Scheuplein, R.J., Blank, I.H.: Permeability of the skin. Physiol. Rev. 51(4), 702–747 (1971)Google Scholar
  2. 2.
    Barry, B.W.: Modern methods of promoting drug absorption through the skin. Mol. Aspects Med. 12(3), 195–241 (1991)CrossRefGoogle Scholar
  3. 3.
    Jepps, O.G., Dancik, Y., Anissimov, Y.G., Roberts, M.S.: Modeling the human skin barrier–Towards a better understanding of dermal absorption. Adv. Drug Deliv. Rev. 65(2), 152–168 (2013)CrossRefGoogle Scholar
  4. 4.
    Querleux, B.: Computational Biophysics of the Skin. Pan Stanford Publishing, Serra Mall (2014)CrossRefGoogle Scholar
  5. 5.
    Mitragotri, S., Anissimov, Y.G., Bunge, A.L., Frasch, H.F., Guy, R.H., Hadgraft, J., Kasting, G.B., Lane, M.E., Roberts, M.S.: Mathematical models of skin permeability: an overview. Int. J. Pharm. 418(1), 115–129 (2011)CrossRefGoogle Scholar
  6. 6.
    Naegel, A., Heisig, M., Wittum, G.: Detailed modeling of skin penetration—An overview. Adv. Drug Deliv. Rev. 65(2), 191–207 (2013). Modeling the human skin barrier - Towards a better understanding of dermal absorptionCrossRefGoogle Scholar
  7. 7.
    Naegel, A., Heisig, M., Wittum, G.: A comparison of two- and three-dimensional models for the simulation of the permeability of human stratum corneum. Eur. J. Pharm. Biopharm. 72(2), 332–338 (2009). Special Section: Biological Barriers and Nanomedicine- Advanced Drug Delivery and Predictive non vivo Testing TechnologiesCrossRefGoogle Scholar
  8. 8.
    Muha, I., Naegel, A., Stichel, S., Grillo, A., Heisig, M., Wittum, G.: Effective diffusivity in membranes with tetrakaidekahedral cells and implications for the permeability of human stratum corneum. J. Membr. Sci. 368, 18–25 (2011)CrossRefGoogle Scholar
  9. 9.
    Nitsche, J.M., Kasting, G.B.: A microscopic multiphase diffusion model of viable epidermis permeability. Biophys. J. 104(10), 2307–2320 (2013)CrossRefGoogle Scholar
  10. 10.
    Schmidt, S., Ilic, C., Schulz, V., Gauger, N.R.: Three-dimensional large-scale aerodynamic shape optimization based on shape calculus. AIAA J. 51(11), 2615–2627 (2013)CrossRefGoogle Scholar
  11. 11.
    Borzì, A., Schulz, V.: Computational optimization of systems governed by partial differential equations. Number 08 in SIAM book series on Computational Science and Engineering. SIAM Philadelphia (2012)Google Scholar
  12. 12.
    Schulz, V., Siebenborn, M., Welker, K.: Structured inverse modeling in parabolic diffusion problems. SIAM Control (submitted) (2014). arXiv:1409.3464
  13. 13.
    Meyer, M., Desbrun, M., Schöder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57, Springer, Berlin (2003)Google Scholar
  14. 14.
    Vogel, A., Reiter, S., Rupp, M., Nägel, A., Wittum, G.: Ug 4: a novel flexible software system for simulating pde based models on high performance computers. Comput. Vis. Sci. 16(4), 165–179 (2013)CrossRefGoogle Scholar
  15. 15.
    Reiter, S., Vogel, A., Heppner, I., Rupp, M., Wittum, G.: A massively parallel geometric multigrid solver on hierarchically distributed grids. Comput. Vis. Sci. 16(4), 151–164 (2013)Google Scholar
  16. 16.
    Helenbrook, B.T.: Mesh deformation using the biharmonic operator. Int. J. Numer. Methods Eng. 56(7), 1007–1021 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Arne Nägel
    • 2
  • Volker Schulz
    • 1
  • Martin Siebenborn
    • 1
    Email author
  • Gabriel Wittum
    • 2
  1. 1.Universität TrierTrierGermany
  2. 2.Goethe UniversitätFrankfurt a.M.Germany

Personalised recommendations