Visualizing multiple error-sensitivity fields for single camera positioning


In many data acquisition tasks, the placement of a real camera can vary significantly in complexity from one scene to another. Optimal camera positioning should be governed not only by least error sensitivity, but in addition to real-world practicalities given by various physical, financial and other types of constraints. It would be a laborious and costly task to model all these constraints if one were to rely solely on fully automatic algorithms to make the decision. In this work, we present a study using 2D and 3D visualization methods to assist in single camera positioning based on error sensitivity of reconstruction and other physical and financial constraints. We develop a collection of visual mappings that depict the composition of multiple error sensitivity fields that occur for a given camera position. Each camera position is then mapped to a 3D visualization that enables visual assessment of the camera configuration. We find that the combined 2D and 3D visualization effectively aids the estimation of camera placement without the need for extensive manual configuration through trial and error. Importantly, it still provides the user with sufficient flexibility to make dynamic decisions based on physical and financial constraints that can not be encoded easily in an algorithm. We demonstrate the utility of our system on two real-world applications namely snooker analysis and camera surveillance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Agarwal, A., Triggs, B.: 3d human pose from silhouettes by relevance vector regression. In: Proceedings of Computer Vision and Pattern Recognition, pp. 882–888 (2004)

  2. 2.

    Banta, J., Wong, L., Dumont, C., Abidi, M.: A next-best-view system for autonomous 3-d object reconstruction. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 30(5), 589–598 (2000)

    Article  Google Scholar 

  3. 3.

    Barr, A.H.: Superquadrics and angle-preserving transformations. IEEE Comput. Graph. Appl. 1(1), 11–23 (1981)

    Article  Google Scholar 

  4. 4.

    Bordoloi, U.D., Shen, H.W.: View selection for volume rendering. In: Proceedings of IEEE Visualization, pp. 487–494 (2005)

  5. 5.

    Botchen, R.P., Weiskop, D., Ertl, T.: Texture-based visualization of uncertainty in flow fields. In: IEEE Visualization, pp. 647–654 (2005)

  6. 6.

    Broida, T.J., Chellappa, R.: Performance bounds for estimating three-dimensional motion parameters from a sequence of noisy images. J. Opt. Soc. Am. A6, 879–889 (1989)

    Article  Google Scholar 

  7. 7.

    Brown, R.A.: Animated visual vibrations as an uncertainty visualisation technique. In: Proceedings of the 2nd International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia, GRAPHITE ’04, pp. 84–89. ACM Press (2004)

  8. 8.

    Cedilnik, A., Rheingans, P.: Procedural annotation of uncertain information. In: IEEE Visualization, pp. 77–83 (2000)

  9. 9.

    Chen, M.: Combining point clouds and volume objects in volume scene graphs. In: International Workshop on Volume Graphics, pp. 127–235 (2005)

  10. 10.

    Cowan, C., Kovesi, P.: Automatic sensor placement from vision task requirements. IEEE Trans. Pattern Anal. Mach. Intell. 10(3), 407–416 (1988)

    Article  Google Scholar 

  11. 11.

    Crawfis, R., Allison, M.J.: A scientific visualization synthesizer. In: IEEE Visualization, pp. 262–267 (1991)

  12. 12.

    Feixas, M., Sbert, M., González, F.: A unified information-theoretic framework for viewpoint selection and mesh saliency. ACM Trans. Appl. Percept. 6(1), 1:1–1:23 (2009)

    Article  Google Scholar 

  13. 13.

    Globus, A., Raible, E.: Fourteen ways to say nothing with scientific visualization. IEEE Comput. 27(7), 86–88 (1994)

    Article  Google Scholar 

  14. 14.

    Guo, H., Namee, B.M.: Using computer vision to create a 3D representation of a snooker table for televised competition broadcasting. In: Proceedings of the 18th Irish Conference on Artifical Intelligence and Cognitive Science, pp. 220–229 (2007)

  15. 15.

    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, second edn. Cambridge University Press, ISBN: 0521540518 (2004)

  16. 16.

    Kehrer, J., Muigg, P., Doleisch, H., Hauser, H.: Interactive visual analysis of heterogeneous scientific data across an interface. IEEE Trans. Vis. Comput. Graph. 17(7), 934–946 (2011)

    Article  Google Scholar 

  17. 17.

    Kindlmann, G.: Superquadric tensor glyphs. In: Joint Eurographics—IEEE TCVG Symposium on Visualization, pp. 147–154 (2004)

  18. 18.

    Kirby, R.M., Marmanis, H., Laidlaw, D.H.: Visualizing multivalued data from 2D incompressible flows using concepts from painting. In: IEEE Visualization, pp. 333–340 (1999)

  19. 19.

    Kohlmann, P., Bruckner, S., Groller, E.M., Kanitsar, A.: Livesync: deformed viewing spheres for knowledge-based navigation. IEEE Trans. Vis. Comput. Graph. 13(6), 1544–1551 (2007)

    Article  Google Scholar 

  20. 20.

    Legg, P.A., Parry, M.L., Chung, D.H.S., Jiang, M.R., Morris, A., Griffiths, I.W., Marshall, D., Chen, M.: From video to 3d animated reconstruction: a computer graphics application for snooker skills training. In: Eurographics (2011)

  21. 21.

    Legg, P.A., Parry, M.L., Chung, D.H.S., Jiang, M.R., Morris, A., Griffiths, I.W., Marshall, D., Chen, M.: Intelligent filtering by semantic importance for single-view 3d reconstruction from snooker video. In: IEEE International Conference on Image Processing, pp. 2433–2436 (2011)

  22. 22.

    Lodha, S.K., Pang, A., Sheehan, R.E., Wittenbrink, C.M.: UFLOW: visualizing uncertainty in fluid flow. In: IEEE Visualization, pp. 249–254 (1996)

  23. 23.

    MacKinnon, D., Aitken, V., Blais, F., Picard, M.: Adaptive laser range scanning. In: Robotic and Sensors, Environments, pp. 1–6 (2007)

  24. 24.

    McLouglin, T., Laramee, R.S., Peikert, R., Post, F.H., Chen, M.: Over Two Decades of Integration-Based, Geometric Flow Visualization. pp. 1807–1829. Blackwell Publishing Ltd (2010)

  25. 25.

    Morris, D.D., Kanatani, K., Kanade, T.: Gauge fixing for accurate 3D estimation. In: Computer Vision and Pattern Recognition, pp. 343–350 (2001)

  26. 26.

    Owens, N., Harris, C., Stennett, C.: Hawk-eye tennis system. In: International Conference on Visual Information, Engineering, pp. 182–185 (2003)

  27. 27.

    Ozuysal, M., Lepetit, V., Fua, P.: Pose estimation for category specific multiview object localization. In: Proceedings of Computer Vision and Pattern Recognition, pp. 778–785 (2009)

  28. 28.

    Pang, A.T., Wittenbrink, C.M., Lodh, S.K.: Approaches to uncertainty visualization. Vis. Comput. 13, 370–390 (1996)

    Article  Google Scholar 

  29. 29.

    Parry, M.L., Legg, P.A., Chung, D.H.S., Griffiths, I.W., Chen, M.: Hierarchical event selection for video storyboards with a case study on snooker video visualization. IEEE Trans. Vis. Comput. Graph. 17(12), 1747–1756 (2011)

    Article  Google Scholar 

  30. 30.

    Putz, V., Zagar, B.: Single-shot estimation of camera position and orientation using SVD. In: Instrumentation and Measurement Technology Conference Proceedings, IEEE, pp. 1914–1919 (2008)

  31. 31.

    Rusinkiewicz, S., Hall-Holt, O., Levoy, M.: Real-time 3D model acquisition. In: SIGGRAPH 2002 Conference Proceedings, Annual Conference Series, pp. 438–446. ACM Press/ACM SIGGRAPH (2002)

  32. 32.

    Sanyal, J., Zhang, S., Dyer, J., Mercer, A., Amburn, P., Moorhead, R.: Noodles: a tool for visualization of numerical weather model ensemble uncertainty. IEEE Trans. Vis. Comput. Graph. 16(6), 1421–1430 (2010)

    Article  Google Scholar 

  33. 33.

    Shaw, C., Ebert, D., Kukla, J., Zwa, A., Soboroff, I., Roberts, D.: Data visualization using automatic, perceptually-motivated shapes. In: Visual Data Exploration and Analysis, SPIE (1998)

  34. 34.

    Taylor, R.: Visualizing multiple fields on the same surface. IEEE Comput. Graph. Appl. 22(3), 6–10 (2002)

    Article  Google Scholar 

  35. 35.

    Tufte, E.R.: The Visual Display of Quantitative Information. Graphics Press, Cheshire, Connecticut (1983)

    Google Scholar 

  36. 36.

    Urness, T., Interrante, V., Longmire, E., Marusic, I., O’Neill, S., Jones, T.W.: Strategies for the visualization of multiple 2d vector fields. IEEE Comput. Graph. Appl. 26(4), 74–82 (2006)

    Article  Google Scholar 

  37. 37.

    Vázquez, P.P., Feixas, M., Sbert, M., Heidrich, W.: Viewpoint selection using viewpoint entropy. In: Proceedings of the Vision Modeling and Visualization Conference, pp. 273–280 (2001)

  38. 38.

    Verma, V., Pang, A.: Comparative flow visualization. IEEE Trans. Vis. Comput. Graph. 10(6), 609–624 (2004)

    Article  Google Scholar 

  39. 39.

    Weng, J., Ahuja, N., Huang, T.S.: Optimal motion and structure estimation. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 864–884 (1993)

    Article  Google Scholar 

  40. 40.

    Wittenbrink, C.M., Pang, A.T., Lodha, S.K.: Glyphs for visualizing uncertainty in vector fields. IEEE Trans. Vis. Comput. Graph. 2(3), 266–279 (1996)

  41. 41.

    Zha, H., Morooka, K., Hasegawa, T., Nagata, T.: Active modeling of 3D objects: planning on the next best pose (NBP) for acquiring range images. In: Proceedings of the International Conference on Recent Advances in 3-D Digital Imaging and Modeling, pp. 68–75 (1997)

  42. 42.

    Zhang, Z., Kanade, T.: Determining the epipolar geometry and its uncertainty: a review. Int. J. Comput. Vis. 27, 161–195 (1998)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to David H. S. Chung.

Additional information

Communicated by Christopher R. Johnson.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chung, D.H.S., Parry, M.L., Legg, P.A. et al. Visualizing multiple error-sensitivity fields for single camera positioning. Comput. Visual Sci. 15, 303–317 (2012).

Download citation


  • Multi-field visualization
  • Glyph-based techniques
  • Uncertainty visualization