Computing and Visualization in Science

, Volume 15, Issue 6, pp 303–317 | Cite as

Visualizing multiple error-sensitivity fields for single camera positioning

  • David H. S. ChungEmail author
  • Matthew L. Parry
  • Philip A. Legg
  • Iwan W. Griffiths
  • Robert S. Laramee
  • Min Chen


In many data acquisition tasks, the placement of a real camera can vary significantly in complexity from one scene to another. Optimal camera positioning should be governed not only by least error sensitivity, but in addition to real-world practicalities given by various physical, financial and other types of constraints. It would be a laborious and costly task to model all these constraints if one were to rely solely on fully automatic algorithms to make the decision. In this work, we present a study using 2D and 3D visualization methods to assist in single camera positioning based on error sensitivity of reconstruction and other physical and financial constraints. We develop a collection of visual mappings that depict the composition of multiple error sensitivity fields that occur for a given camera position. Each camera position is then mapped to a 3D visualization that enables visual assessment of the camera configuration. We find that the combined 2D and 3D visualization effectively aids the estimation of camera placement without the need for extensive manual configuration through trial and error. Importantly, it still provides the user with sufficient flexibility to make dynamic decisions based on physical and financial constraints that can not be encoded easily in an algorithm. We demonstrate the utility of our system on two real-world applications namely snooker analysis and camera surveillance.


Multi-field visualization Glyph-based techniques Uncertainty visualization 


  1. 1.
    Agarwal, A., Triggs, B.: 3d human pose from silhouettes by relevance vector regression. In: Proceedings of Computer Vision and Pattern Recognition, pp. 882–888 (2004)Google Scholar
  2. 2.
    Banta, J., Wong, L., Dumont, C., Abidi, M.: A next-best-view system for autonomous 3-d object reconstruction. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 30(5), 589–598 (2000)CrossRefGoogle Scholar
  3. 3.
    Barr, A.H.: Superquadrics and angle-preserving transformations. IEEE Comput. Graph. Appl. 1(1), 11–23 (1981)CrossRefGoogle Scholar
  4. 4.
    Bordoloi, U.D., Shen, H.W.: View selection for volume rendering. In: Proceedings of IEEE Visualization, pp. 487–494 (2005)Google Scholar
  5. 5.
    Botchen, R.P., Weiskop, D., Ertl, T.: Texture-based visualization of uncertainty in flow fields. In: IEEE Visualization, pp. 647–654 (2005)Google Scholar
  6. 6.
    Broida, T.J., Chellappa, R.: Performance bounds for estimating three-dimensional motion parameters from a sequence of noisy images. J. Opt. Soc. Am. A6, 879–889 (1989)CrossRefGoogle Scholar
  7. 7.
    Brown, R.A.: Animated visual vibrations as an uncertainty visualisation technique. In: Proceedings of the 2nd International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia, GRAPHITE ’04, pp. 84–89. ACM Press (2004)Google Scholar
  8. 8.
    Cedilnik, A., Rheingans, P.: Procedural annotation of uncertain information. In: IEEE Visualization, pp. 77–83 (2000)Google Scholar
  9. 9.
    Chen, M.: Combining point clouds and volume objects in volume scene graphs. In: International Workshop on Volume Graphics, pp. 127–235 (2005)Google Scholar
  10. 10.
    Cowan, C., Kovesi, P.: Automatic sensor placement from vision task requirements. IEEE Trans. Pattern Anal. Mach. Intell. 10(3), 407–416 (1988)CrossRefGoogle Scholar
  11. 11.
    Crawfis, R., Allison, M.J.: A scientific visualization synthesizer. In: IEEE Visualization, pp. 262–267 (1991)Google Scholar
  12. 12.
    Feixas, M., Sbert, M., González, F.: A unified information-theoretic framework for viewpoint selection and mesh saliency. ACM Trans. Appl. Percept. 6(1), 1:1–1:23 (2009)CrossRefGoogle Scholar
  13. 13.
    Globus, A., Raible, E.: Fourteen ways to say nothing with scientific visualization. IEEE Comput. 27(7), 86–88 (1994)CrossRefGoogle Scholar
  14. 14.
    Guo, H., Namee, B.M.: Using computer vision to create a 3D representation of a snooker table for televised competition broadcasting. In: Proceedings of the 18th Irish Conference on Artifical Intelligence and Cognitive Science, pp. 220–229 (2007)Google Scholar
  15. 15.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, second edn. Cambridge University Press, ISBN: 0521540518 (2004)Google Scholar
  16. 16.
    Kehrer, J., Muigg, P., Doleisch, H., Hauser, H.: Interactive visual analysis of heterogeneous scientific data across an interface. IEEE Trans. Vis. Comput. Graph. 17(7), 934–946 (2011)CrossRefGoogle Scholar
  17. 17.
    Kindlmann, G.: Superquadric tensor glyphs. In: Joint Eurographics—IEEE TCVG Symposium on Visualization, pp. 147–154 (2004)Google Scholar
  18. 18.
    Kirby, R.M., Marmanis, H., Laidlaw, D.H.: Visualizing multivalued data from 2D incompressible flows using concepts from painting. In: IEEE Visualization, pp. 333–340 (1999)Google Scholar
  19. 19.
    Kohlmann, P., Bruckner, S., Groller, E.M., Kanitsar, A.: Livesync: deformed viewing spheres for knowledge-based navigation. IEEE Trans. Vis. Comput. Graph. 13(6), 1544–1551 (2007)CrossRefGoogle Scholar
  20. 20.
    Legg, P.A., Parry, M.L., Chung, D.H.S., Jiang, M.R., Morris, A., Griffiths, I.W., Marshall, D., Chen, M.: From video to 3d animated reconstruction: a computer graphics application for snooker skills training. In: Eurographics (2011)Google Scholar
  21. 21.
    Legg, P.A., Parry, M.L., Chung, D.H.S., Jiang, M.R., Morris, A., Griffiths, I.W., Marshall, D., Chen, M.: Intelligent filtering by semantic importance for single-view 3d reconstruction from snooker video. In: IEEE International Conference on Image Processing, pp. 2433–2436 (2011)Google Scholar
  22. 22.
    Lodha, S.K., Pang, A., Sheehan, R.E., Wittenbrink, C.M.: UFLOW: visualizing uncertainty in fluid flow. In: IEEE Visualization, pp. 249–254 (1996)Google Scholar
  23. 23.
    MacKinnon, D., Aitken, V., Blais, F., Picard, M.: Adaptive laser range scanning. In: Robotic and Sensors, Environments, pp. 1–6 (2007)Google Scholar
  24. 24.
    McLouglin, T., Laramee, R.S., Peikert, R., Post, F.H., Chen, M.: Over Two Decades of Integration-Based, Geometric Flow Visualization. pp. 1807–1829. Blackwell Publishing Ltd (2010)Google Scholar
  25. 25.
    Morris, D.D., Kanatani, K., Kanade, T.: Gauge fixing for accurate 3D estimation. In: Computer Vision and Pattern Recognition, pp. 343–350 (2001)Google Scholar
  26. 26.
    Owens, N., Harris, C., Stennett, C.: Hawk-eye tennis system. In: International Conference on Visual Information, Engineering, pp. 182–185 (2003)Google Scholar
  27. 27.
    Ozuysal, M., Lepetit, V., Fua, P.: Pose estimation for category specific multiview object localization. In: Proceedings of Computer Vision and Pattern Recognition, pp. 778–785 (2009)Google Scholar
  28. 28.
    Pang, A.T., Wittenbrink, C.M., Lodh, S.K.: Approaches to uncertainty visualization. Vis. Comput. 13, 370–390 (1996)CrossRefGoogle Scholar
  29. 29.
    Parry, M.L., Legg, P.A., Chung, D.H.S., Griffiths, I.W., Chen, M.: Hierarchical event selection for video storyboards with a case study on snooker video visualization. IEEE Trans. Vis. Comput. Graph. 17(12), 1747–1756 (2011)CrossRefGoogle Scholar
  30. 30.
    Putz, V., Zagar, B.: Single-shot estimation of camera position and orientation using SVD. In: Instrumentation and Measurement Technology Conference Proceedings, IEEE, pp. 1914–1919 (2008)Google Scholar
  31. 31.
    Rusinkiewicz, S., Hall-Holt, O., Levoy, M.: Real-time 3D model acquisition. In: SIGGRAPH 2002 Conference Proceedings, Annual Conference Series, pp. 438–446. ACM Press/ACM SIGGRAPH (2002)Google Scholar
  32. 32.
    Sanyal, J., Zhang, S., Dyer, J., Mercer, A., Amburn, P., Moorhead, R.: Noodles: a tool for visualization of numerical weather model ensemble uncertainty. IEEE Trans. Vis. Comput. Graph. 16(6), 1421–1430 (2010)CrossRefGoogle Scholar
  33. 33.
    Shaw, C., Ebert, D., Kukla, J., Zwa, A., Soboroff, I., Roberts, D.: Data visualization using automatic, perceptually-motivated shapes. In: Visual Data Exploration and Analysis, SPIE (1998)Google Scholar
  34. 34.
    Taylor, R.: Visualizing multiple fields on the same surface. IEEE Comput. Graph. Appl. 22(3), 6–10 (2002)CrossRefGoogle Scholar
  35. 35.
    Tufte, E.R.: The Visual Display of Quantitative Information. Graphics Press, Cheshire, Connecticut (1983)Google Scholar
  36. 36.
    Urness, T., Interrante, V., Longmire, E., Marusic, I., O’Neill, S., Jones, T.W.: Strategies for the visualization of multiple 2d vector fields. IEEE Comput. Graph. Appl. 26(4), 74–82 (2006)CrossRefGoogle Scholar
  37. 37.
    Vázquez, P.P., Feixas, M., Sbert, M., Heidrich, W.: Viewpoint selection using viewpoint entropy. In: Proceedings of the Vision Modeling and Visualization Conference, pp. 273–280 (2001)Google Scholar
  38. 38.
    Verma, V., Pang, A.: Comparative flow visualization. IEEE Trans. Vis. Comput. Graph. 10(6), 609–624 (2004)CrossRefGoogle Scholar
  39. 39.
    Weng, J., Ahuja, N., Huang, T.S.: Optimal motion and structure estimation. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 864–884 (1993)CrossRefGoogle Scholar
  40. 40.
    Wittenbrink, C.M., Pang, A.T., Lodha, S.K.: Glyphs for visualizing uncertainty in vector fields. IEEE Trans. Vis. Comput. Graph. 2(3), 266–279 (1996) Google Scholar
  41. 41.
    Zha, H., Morooka, K., Hasegawa, T., Nagata, T.: Active modeling of 3D objects: planning on the next best pose (NBP) for acquiring range images. In: Proceedings of the International Conference on Recent Advances in 3-D Digital Imaging and Modeling, pp. 68–75 (1997)Google Scholar
  42. 42.
    Zhang, Z., Kanade, T.: Determining the epipolar geometry and its uncertainty: a review. Int. J. Comput. Vis. 27, 161–195 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • David H. S. Chung
    • 1
    Email author
  • Matthew L. Parry
    • 1
  • Philip A. Legg
    • 2
  • Iwan W. Griffiths
    • 3
  • Robert S. Laramee
    • 1
  • Min Chen
    • 4
  1. 1.Department of Computer ScienceSwansea UniversitySwanseaUK
  2. 2.Department of Computer ScienceUniversity of OxfordOxfordUK
  3. 3.College of EngineeringSwansea UniversitySwanseaUK
  4. 4.Oxford e-Research CentreUniversity of OxfordOxfordUK

Personalised recommendations