Advertisement

Computing and Visualization in Science

, Volume 15, Issue 5, pp 271–289 | Cite as

Local multilevel preconditioners for elliptic equations with jump coefficients on bisection grids

  • Long Chen
  • Michael Holst
  • Jinchao Xu
  • Yunrong Zhu
Article

Abstract

The goal of this paper is to design optimal multilevel solvers for the finite element approximation of second order linear elliptic problems with piecewise constant coefficients on bisection grids. Local multigrid and BPX preconditioners are constructed based on local smoothing only at the newest vertices and their immediate neighbors. The analysis of eigenvalue distributions for these local multilevel preconditioned systems shows that there are only a fixed number of eigenvalues which are deteriorated by the large jump. The remaining eigenvalues are bounded uniformly with respect to the coefficients and the meshsize. Therefore, the resulting preconditioned conjugate gradient algorithm will converge with an asymptotic rate independent of the coefficients and logarithmically with respect to the meshsize. As a result, the overall computational complexity is nearly optimal.

Keywords

Local multilevel preconditioners Multigrid BPX  Discontinuous coefficients Adaptive finite element methods  PCG Effective condition number 

Notes

Acknowledgments

The first author is supported in part by NSF Grant DMS-0811272, NSF Grant DMS-1115961, and in part by Department of Energy prime award #DE-SC0006903. The second and fourth authors were supported in part by NSF Awards 1065972 and 1217175, by DTRA Award HDTRA-09-1-0036, and by subcontract to DOE Award #DE-SC0006903. The third author was supported in part by NSF DMS 1217142 and DOE Award #DE-SC0006903. The fourth author was supported in part by NSF DMS 1319110 and the University Research Committee Grant No. F119 at Idaho State University, Pocatello, Idaho. This work is also partially supported by the Beijing International Center for Mathematical Research.

References

  1. 1.
    Aksoylu, B., Holst, M.: Optimality of multilevel preconditioners for local mesh refinement in three dimensions. SIAM J. Numer. Anal. 44(3), 1005–1025 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Aksoylu, B., Graham, I., Klie, H., Scheichl, R.: Towards a rigorously justified algebraic preconditioner for high-contrast diffusion problems. Comput. Vis. Sci. 11(4), 319–331 (2008)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Alcouffe, R.E., Brandt, A., Dendy, J.E., Painter, J.W.: The multi-grid methods for the diffusion equation with strongly discontinuous coefficients. SIAM J. Sci. Stat. Comput. 2, 430–454 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Ashby, S.F., Holst, M.J., Manteuffel, T.A., Saylor, P.E.: The role of the inner product in stopping criteria for conjugate gradient iterations. BIT 41(1), 026–052 (2001)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Axelsson, O.: Iteration number for the conjugate gradient method. Math. Comput. Simul. 61(3–6), 421–435 (2003). MODELLING 2001 (Pilsen)Google Scholar
  6. 6.
    Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bai, D., Brandt, A.: Local mesh refinement multilevel techniques. SIAM J. Sci. Stat. Comput. 8(2), 109–134 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Bank, R.E., Dupont, T., Yserentant, H.: The hierarchical basis multigrid method. Numer. Math. 52, 427–458 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Bank, R.E.: Hierarchical bases and the finite element method. Acta Numer. 5, 1–43 (1996)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Bernardi, C., Verfürth, R.: Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85(4), 579–608 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97(2), 219–268 (2004)Google Scholar
  12. 12.
    Bramble, J.H., Pasciak, J.E., Xu, J.: Parallel multilevel preconditioners. Math. Comput. 55(191), 1–22 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Bramble, J.H., Xu, J.: Some estimates for a weighted \({L}^2\) projection. Math. Comput. 56, 463–476 (1991)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)CrossRefzbMATHGoogle Scholar
  15. 15.
    Cai, Z., Zhang, S.: Recovery-based error estimator for interface problems: conforming linear elements. SIAM J. Numer. Anal. 47(3), 2132–2156 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Cascon, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Chan, T.F., Wan, W.L.: Robust multigrid methods for nonsmooth coefficient elliptic linear systems. J. Comput. Appl. Math. 123(1–2), 323–352 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Chen, L.: iFEM: an integrate finite element methods package in MATLAB. Technical report, University of California at Irvine (2009)Google Scholar
  19. 19.
    Chen, Z., Dai, S.: On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients. SIAM J. Sci. Comput. 24(2), 443–462 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Chen, L.: Short implementation of bisection in MATLAB. In: Jorgensen, P., Shen, X., Shu, C.-W., Yan, N. (eds.) Recent Advances in Computational Sciences—Selected Papers from the International Workshop on Computational Sciences and Its Education, pp. 318–332. World Scientific Pub Co Inc, Singapore (2007)Google Scholar
  21. 21.
    Chen, L.: Deriving the X-Z Identity from auxiliary space method. In: Yunqing, Huang, Ralf, Kornhuber, Olof, Widlund, Xu, Jinchao (eds.) Domain Decomposition Methods in Science and Engineering XIX, pp. 309–316. Springer, Berlin (2010)Google Scholar
  22. 22.
    Chen, L., Zhang, C.-S.: A coarsening algorithm and multilevel methods on adaptive grids by newest vertex bisection. J. Comput. Math. 28(6), 767–789 (2010)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Chen, L., Nochetto, R.H., Xu, J.: Optimal multilevel methods for graded bisection grids. Numer. Math. 120(1), 1–34 (2011)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Coomer, R.K., Graham, I.G.: Massively parallel methods for semiconductor device modelling. Computing 56(1), 1–27 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Dryja, M., Sarkis, M.V., Widlund, O.B.: Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math. 72(3), 313–348 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, 3rd edn. Johns Hopkins University Press, Baltimore (1996)Google Scholar
  27. 27.
    Graham, I.G., Hagger, M.J.: Unstructured additive schwarz-conjugate gradient method for elliptic problems with highly discontinuous coefficients. SIAM J. Sci. Comput. 20, 2041–2066 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Graham, I., Lechner, P., Scheichl, R.: Domain decomposition for multiscale pdes. Numer. Math. 106(4), 589–626 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Heise, B., Kuhn, M.: Parallel solvers for linear and nonlinear exterior magnetic field problems based upon coupled FE/BE formulations. Computing, 56(3), 237–258 (1996). International GAMM-Workshop on Multi-level Methods (Meisdorf, 1994)Google Scholar
  30. 30.
    Hiptmair, R., Zheng, W.: Local multigrid in H (curl). J. Comput. Math. 27(5), 573–603 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Kees, C.E., Miller, C.T., Jenkins, E.W., Kelley, C.T.: Versatile two-level Schwarz preconditioners for multiphase flow. Comput. Geosci. 7(2), 91–114 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Kossaczky, I.: A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math. 55, 275–288 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Meza, J., Tuminaro, R.: A multigrid preconditioner for the semiconductor equations. SIAM J. Sci. Comput. 17, 118–132 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Mitchell, W.F.: A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Softw. (TOMS) Arch. 15(4), 326–347 (1989)CrossRefzbMATHGoogle Scholar
  35. 35.
    Mitchell, W.F.: Optimal multilevel iterative methods for adaptive grids. SIAM J. Sci. Stat. Comput. 13, 146–167 (1992)CrossRefzbMATHGoogle Scholar
  36. 36.
    Nochetto, R., Siebert, K., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: DeVore, R., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation, pp. 409–542. Springer, 2009. Dedicated to Wolfgang Dahmen on the Occasion of His 60th BirthdayGoogle Scholar
  37. 37.
    Oswald, P.: Multilevel Finite Element Approximation. Theory and Applications. Teubner Skripten zur Numerik. Teubner Verlag, Stuttgart (1994)Google Scholar
  38. 38.
    Oswald, P.: On the robustness of the BPX-preconditioner with respect to jumps in the coefficients. Math. Comput. 68, 633–650 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Petzoldt, M.: A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16(1), 47–75 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003)CrossRefzbMATHGoogle Scholar
  41. 41.
    Sarkis, M.: Nonstandard coarse spaces and schwarz methods for elliptic problems with discontinuous coefficients using non-conforming elements. Numer. Math. 77(3), 383–406 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Scheichl, R., Vainikko, E.: Additive schwarz with aggregation-based coarsening for elliptic problems with highly variable coefficients. Computing 80(4), 319–343 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Scott, R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Stevenson, R.: Stable three-point wavelet bases on general meshes. Numer. Math. 80(1), 131–158 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77, 227–241 (2008) Google Scholar
  46. 46.
    Vohralık, M.: Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients. Technical Report Preprint R08009, Laboratoire Jacques-Louis Lions (2008)Google Scholar
  47. 47.
    Vuik, C., Segal, A., Meijerink, J.A.: An efficient preconditioned cg method for the solution of a class of layered problems with extreme contrasts in the coefficients. J. Comput. Phys. 152(1), 385–403 (1999)CrossRefzbMATHGoogle Scholar
  48. 48.
    Wang, J., Xie, R.: Domain decomposition for elliptic problems with large jumps in coefficients. In: Proceedings of Conference on Scientific and Engineering Computing, pp. 74–86. National Defense Industry Press (1994)Google Scholar
  49. 49.
    Wang, J.: New convergence estimates for multilevel algorithms for finite-element approximations. J. Comput. Appl. Math. 50, 593–604 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Wang, Z., Wang, C., Chen, K.: Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. J. Power Sources 94, 40–50 (2001)CrossRefGoogle Scholar
  51. 51.
    Widlund, O.B.: Some Schwarz methods for symmetric and nonsymmetric elliptic problems. In: Keyes, D.E., Chan, T.F., Meurant, G.A., Scroggs, J.S., Voigt, R.G. (eds.) Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 19–36. SIAM, Philadelphia (1992)Google Scholar
  52. 52.
    Xu, J., Chen, L., Nochetto, R.: Optimal multilevel methods for H (grad), H (curl), and H (div) systems on graded and unstructured grids. In: Multiscale, Nonlinear and Adaptive Approximation, pp. 599–659. Springer, Berlin (2009) Google Scholar
  53. 53.
    Xu, J.: Counter examples concerning a weighted \({L}^{2}\) projection. Math. Comput. 57, 563–568 (1991)zbMATHGoogle Scholar
  54. 54.
    Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34, 581–613 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  55. 55.
    Xu, J.: A new class of iterative methods for nonselfadjoint or indefinite problems. SIAM J. Numer. Anal. 29, 303–319 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  56. 56.
    Xu, J.: An introduction to multigrid convergence theory. In: Chan, R., Chan, T., Golub, G. (eds.) Iterative Methods in Scientific Computing. Springer, Berlin (1997)Google Scholar
  57. 57.
    Xu, J., Zikatanov, L.: The method of alternating projections and the method of subspace corrections in Hilbert space. J. Am. Math. Soc. 15, 573–597 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  58. 58.
    Xu, J., Zhu, Y.: Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients. Math. Model. Methods Appl. Sci. 18(1), 77–105 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  59. 59.
    Yserentant, H.: Old and new convergence proofs for multigrid methods. Acta Numer., pp. 285–326 (1993)Google Scholar
  60. 60.
    Yserentant, H.: Two preconditioners based on the multi-level splitting of finite element spaces. Numer. Math. 58, 163–184 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  61. 61.
    Zhu, Y.: Domain decomposition preconditioners for elliptic equations with jump coefficients. Numer. Linear Algebra Appl. 15(2–3), 271–289 (2008)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Long Chen
    • 1
  • Michael Holst
    • 2
  • Jinchao Xu
    • 3
  • Yunrong Zhu
    • 4
  1. 1.Department of MathematicsUniversity of California at IrvineIrvineUSA
  2. 2.Department of MathematicsUniversity of California at San DiegoLa JollaUSA
  3. 3.Department of MathematicsPennsylvania State UniversityUniversity ParkUSA
  4. 4.Department of MathematicsIdaho State UniversityPocatelloUSA

Personalised recommendations