Skip to main content
Log in

Photorealistic visualization and fluid animation: coupling of Maya with a two-phase Navier-Stokes fluid solver

  • Published:
Computing and Visualization in Science

Abstract

We have coupled the three-dimensional solver for the two-phase incompressible Navier-Stokes equations NaSt3DGPF with Autodesk Maya. Maya is the industry standard software framework for the creation of three-dimensional animations. The parallel level-set-based fluid solver NaSt3DGPF simulates the interaction of two fluids like air and water. It uses high-order finite difference discretization methods that are designed for physics applications. By coupling both applications, we are now able to set up scientific fluid simulations in an easy-to-use user interface. Moreover, the rendering techniques provided by Maya allow us to create photorealistic visualizations for computational fluid dynamics problems and support the creation of highly visually realistic fluid simulations for animation movies. Altogether, we obtain an easy usable and fully coupled fluid animation toolkit for two-phase fluid simulations. These are the first published results of the full integration of a physics-oriented, high-order grid-based parallel two-phase fluid solver in Maya, at least to our knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. During the review process of this article, we became aware of a previously unavailable Autodesk Maya software version, which now has two-phase flow animation support. However, technical details, the parallelization and the achievable quality of this extension are unclear.

  2. This is at least valid for the software version of Maya (2011) that was available during the software development for this paper.

References

  1. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22(104), 745–762 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cline, H.E., Lorensen, W.E.: Marching cubes: a high resolution 3d surface construction algorithm. SIGGRAPH Comput. Graph. 21(4), 163–169 (1987). doi:10.1145/37402.37422

    Article  Google Scholar 

  3. Croce, R., Engel, M., Strybny, J., Thorenz, C.: A parallel 3d free surface Navier-Stokes solver for high performance computing at the german waterways administration. In: The 7th International Conference on Hydroscience and Engineering (ICHE-2006). Philadelphia, USA (2006)

  4. Croce, R.: Numerische Simulation der Interaktion von inkompressiblen Zweiphasenströmungen mit Starrkörpern in drei Raumdimensionen. PhD thesis (2010)

  5. Croce, R., Griebel, M., Schweitzer, M.A.: Numerical simulation of bubble and droplet-deformation by a level set approach with surface tension in three dimensions. Int. J. Numer. Methods Fluids 62(9), 963–993 (2009). doi:10.1002/fld.2051

    MathSciNet  Google Scholar 

  6. Décoret, X., Eisemann, E.: Fast scene voxelization and applications. In: I3D ’06: Proceedings of the 2006 symposium on Interactive 3D graphics and games, pp. 71–78. ACM, New York (2006). doi:10.1145/1111411.1111424

  7. Dornseifer, T., Griebel, M., Neunhoeffer, T.: Numerical Simulation in Fluid Dynamics, a Practical Introduction. SIAM, Philadelphia (1998)

    Google Scholar 

  8. Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I.: A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 83–116 (2002). doi:10.1006/jcph.2002.7166. URL:http://portal.acm.org/citation.cfm?id=641282.641285

    Google Scholar 

  9. Enright, D., Losasso, F., Fedkiw, R.: A fast and accurate semi-lagrangian particle level set method. Comput. Struct. 83, 479–490 (2003)

    Article  MathSciNet  Google Scholar 

  10. Fedkiw, R., Stam, J., Jensen, H.W.: Visual simulation of smoke. In: SIGGRAPH 2001: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 15–22. ACM, New York (2001). doi:10.1145/383259.383260

  11. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999). doi:10.1006/jcph.1999.6236

    Article  MathSciNet  MATH  Google Scholar 

  12. Foster, N., Fedkiw, R.: Practical animation of liquids. In: SIGGRAPH ’01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp. 23–30. ACM, New York (2001). doi:10.1145/383259.383261

  13. Foster, N., Metaxas, D.: Modeling the motion of a hot, turbulent gas. In: SIGGRAPH 1997: Proceedings of the 24th Annual Conference on Computer graphics and Interactive Techniques, pp. 181–188. ACM Press/Addison-Wesley Publishing Co., New York (1997). doi:10.1145/258734.258838

  14. Foster, N., Metaxas, D.: Realistic animation of liquids. Graphical models and image processing: GMIP 58(5), 471–483 (1996). doi:10.1006/gmip.1996.0039

  15. Gould, D.: Complete Maya Programming: An Extensive Guide to MEL and the C++ API. Elsevier, Amsterdam (2003)

    Google Scholar 

  16. Griebel, M., Metsch, B., Oeltz, D., Schweitzer, M.A.: Coarse grid classification: a parallel coarsening scheme for algebraic multigrid methods. Numer. Linear Algebra Appl. 13(2–3), 193–214 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Griebel, M., Zaspel, P.: A multi-GPU accelerated solver for the three-dimensional two-phase incompressible Navier-Stokes equations. Comput. Sci. Res. Dev. 25(1–2), 65–73 (2010). doi:10.1007/s00450-010-0111-7

    Article  Google Scholar 

  18. Hong, J.M., Kim, C.H.: Discontinuous fluids. In: SIGGRAPH 2005: ACM SIGGRAPH 2005 Papers, pp. 915–920. ACM, New York (2005). doi:10.1145/1186822.1073283

  19. Hong, J.M., Lee, H.Y., Yoon, J.C., Kim, C.H.: Bubbles alive. In: SIGGRAPH 2008: ACM SIGGRAPH 2008 papers, pp. 1–4. ACM, New York (2008). doi:10.1145/1399504.1360647

  20. Kang, M., Fedkiw, R., Liu, X.D.: A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15(3), 323–360 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kaufman, A., Shimony, E.: 3d scan-conversion algorithms for voxel-based graphics. In: SI3D ’86: Proceedings of the 1986 workshop on Interactive 3D graphics, pp. 45–75. ACM, New York (1987). doi:10.1145/319120.319126

  22. Lee, H.Y., Hong, J.M., Kim, C.H.: Interchangeable SPH and level set method in multiphase fluids. Vis. Comput. 25(5), 713–718 (2009). doi:10.1007/s00371-009-0339-z

    Article  MathSciNet  Google Scholar 

  23. Losasso, F., Shinar, T., Selle, A., Fedkiw, R.: Multiple interacting liquids. In: SIGGRAPH 2006: ACM SIGGRAPH 2006 Papers, pp. 812–819. ACM, New York (2006). doi:10.1145/1179352.1141960

  24. Losasso, F., Talton, J.O., Kwatra, N., Fedkiw, R.: Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Gr. 14(4), 797–804 (2008). doi:10.1109/TVCG.2008.37

    Google Scholar 

  25. Mihalef, V., Metaxas, D.N., Sussman, M.: Simulation of two-phase flow with sub-scale droplet and bubble effects. Comput. Graph. Forum 28(2), 229–238 (2009)

    Article  Google Scholar 

  26. Monaghan, J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992). doi:10.1146/annurev.aa.30.090192.002551

    Article  Google Scholar 

  27. Montani, C., Scateni, R., Scopigno, R.: A modified look-up table for implicit disambiguation of marching cubes. Vis. Comput. 10(6), 353–355 (1994)

    Google Scholar 

  28. Selle, A., Rasmussen, N., Fedkiw, R.: A vortex particle method for smoke, water and explosions. In: SIGGRAPH 2005: ACM SIGGRAPH 2005 Papers, pp. 910–914. ACM, New York (2005). doi:10.1145/1186822.1073282

  29. Selle, A., Fedkiw, R., Kim, B., Liu, Y., Rossignac, J.: An unconditionally stable MacCormack method. J. Sci. Comput. 35(2–3), 350–371 (2008). doi:10.1007/s10915-007-9166-4

    Article  MathSciNet  MATH  Google Scholar 

  30. Stam, J.: Stable fluids. In: Proceedings of SIGGRAPH 1999, Computer Graphics Proceedings, Annual Conference Series, pp. 121–128 (1999)

  31. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146–159 (1994). doi:10.1006/jcph.1994.1155. URL http://portal.acm.org/citation.cfm?id=182683.182718

    Google Scholar 

  32. Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Saito, T., Tanaka, K., Ueki, H.: Realistic animation of fluid with splash and foam. Comput. Graph. Forum 22(3), 391–400 (2003)

    Article  Google Scholar 

  33. Thuerey, N.: Fluid simulation with blender. Dr. Dobbs Journal (2006)

  34. Verleye, B., Croce, R., Griebel, M., Klitz, M., Lomov, S., Morren, G., Sol, H., Verpoest, I., Roose, D.: Permeability of textile reinforcements: simulation, influence of shear, validation. Compos. Sci. Technol. 68(13), 2804–2810 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in parts by the Sonder- forschungsbereich 611 Singular phenomena and scaling in mathematical models funded by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Zaspel.

Additional information

Communicated by: Arnold Reuskan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mpeg 65606 KB)

Supplementary material 2 (mp4 55284 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaspel, P., Griebel, M. Photorealistic visualization and fluid animation: coupling of Maya with a two-phase Navier-Stokes fluid solver. Comput. Visual Sci. 14, 371–383 (2011). https://doi.org/10.1007/s00791-013-0188-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-013-0188-1

Keywords

Navigation