Skip to main content
Log in

An active-contour based algorithm for the automated segmentation of dense yeast populations on transmission microscopy images

  • Original Article
  • Published:
Computing and Visualization in Science

Abstract

An image-processing pipeline for the automated segmentation of yeast cells in microscopy images is proposed. The method is suitable for the non-invasive detection of individual cells in transmission data which can be acquired simultaneously with fluorescence data. It moreover takes the varying quality and highly heterogeneous characteristics of cells in transmission images into account, is capable to process images with dense yeast populations and can be used to extract quantitative cell-based data from transmission/fluorescence image pairs. Applicability and performance of the method is evaluated on a data set of 523 different yeast deletion mutant strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bredies, K.: A variational weak weighted derivative: Sobolev spaces and degenerate elliptic equations. Tech. rep., University of Bremen (2008)

  2. Buades A., Coll B., Morel J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carpenter A.E., Jones T.R., Lamprecht M.R., Clarke C., Kang I.H., Friman O., Guertin D.A., Chang J.H., Lindquist R.A., Moffat J., Golland P., Sabatini D.M.: Cellprofiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7(10), R100 (2006)

    Article  Google Scholar 

  4. Caselles V., Catté F., Coll T., Dibos F.: A geometric model for active contours in image processing. Numerische Mathematik 66(1), 1–31 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caselles V., Kimmel R., Sapiro G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  6. Catté F., Lions P.L., Morel J.M., Coll T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chan T.F., Shen J.: Image Processing and Analysis—Variational, PDE, Wavelet, and Stochastic Methods. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  8. Hamilton N.A., Pantelic R.S., Hanson K., Teasdale R.D.: Fast automated cell phenotype image classification. BMC Bioinf. 8, 110 (2007)

    Article  Google Scholar 

  9. Huh S., Lee D., Murphy R.F.: Efficient framework for automated classification of subcellular patterns in budding yeast. Cytom. A 75(11), 934–940 (2009)

    Article  Google Scholar 

  10. Huh W.K., Falvo J.V., Gerke L.C., Carroll A.S., Howson R.W., Weissman J.S., O’Shea E.K.: Global analysis of protein localization in budding yeast. Nature 425(6959), 686–691 (2003)

    Article  Google Scholar 

  11. Kass M., Witkin A., Terzopoulos D.: Snakes: Active Contour Models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  12. Kvarnstrom M., Logg K., Diez A., Bodvard K., Kall M.: Image analysis algorithms for cell contour recognition in budding yeast. Opt. Express 16(17), 12943–12957 (2008)

    Article  Google Scholar 

  13. Li Z., Vizeacoumar F.J., Bahr S., Li J., Warringer J., Vizeacoumar F.S., Min R., Vandersluis B., Bellay J., Devit M., Fleming J.A., Stephens A., Haase J., Lin Z.Y., Baryshnikova A., Lu H., Yan Z., Jin K., Barker S., Datti A., Giaever G., Nislow C., Bulawa C., Myers C.L., Costanzo M., Gingras A.C., Zhang Z., Blomberg A., Bloom K., Andrews B., Boone C.: Systematic exploration of essential yeast gene function with temperature-sensitive mutants. Nat. Biotechnol. 29(4), 361–367 (2011)

    Article  MATH  Google Scholar 

  14. Ohnuki S., Oka S., Nogami S., Ohya Y.: High-content, image-based screening for drug targets in yeast. PLoS One 5(4), e10177 (2010)

    Article  Google Scholar 

  15. Ohya Y., Sese J., Yukawa M., Sano F., Nakatani Y., Saito T.L., Saka A., Fukuda T., Ishihara S., Oka S., Suzuki G., Watanabe M., Hirata A., Ohtani M., Sawai H., Fraysse N., Latge J.P., Francois J.M., Aebi M., Tanaka S., Muramatsu S., Araki H., Sonoike K., Nogami S., Morishita S.: High-dimensional and large-scale phenotyping of yeast mutants. Proc. Natl. Acad. Sci. USA 102(52), 19015–19020 (2005)

    Article  Google Scholar 

  16. Perona P., Malik J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  17. Saito T.L., Ohtani M., Sawai H., Sano F., Saka A., Watanabe D., Yukawa M., Ohya Y., Morishita S.: Scmd: saccharomyces cerevisiae morphological database. Nucleic Acids Res. 32(Database issue), D319–D322 (2004)

    Article  Google Scholar 

  18. Saito T.L., Sese J., Nakatani Y., Sano F., Yukawa M., Ohya Y., Morishita S.: Data mining tools for the saccharomyces cerevisiae morphological database. Nucleic Acids Res. 33(Web Server issue), W753–W757 (2005)

    Article  Google Scholar 

  19. The MathWorks Inc.: MATLAB, version 7.11.0 (R2010b) (2010)

  20. Visage Imaging GmbH: Amira 5.3 Microscopy/ResolveRT (2011)

  21. Vizeacoumar F.J., van Dyk N., Vizeacoumar F.S., Cheung V., Li J., Sydorskyy Y., Case N., Li Z., Datti A., Nislow C., Raught B., Zhang Z., Frey B., Bloom K., Boone C., Andrews B.J.: Integrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis. J. Cell Biol. 188(1), 69–81 (2010)

    Article  Google Scholar 

  22. Weickert J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  23. Wolinski H., Petrovic U., Mattiazzi M., Petschnigg J., Heise B., Natter K., Kohlwein S.D.: Imaging-based live cell yeast screen identifies novel factors involved in peroxisome assembly. J. Proteome Res. 8(1), 20–27 (2009)

    Article  Google Scholar 

  24. Xu C., Prince J.L.: Snakes, shapes and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Bredies.

Additional information

Kristian Bredies acknowledges support by the Austrian Science Fund (FWF) special research grant SFB F32 “Mathematical Optimization and Applications in Biomedical Sciences”. This work was supported by grants from the Austrian Science Funds, FWF, project [F3005-B12 LIPOTOX] and the Federal Ministry of Science and Research [Project GOLD - Genomics of lipid-associated disorders, in the framework of the Austrian Genome program, GEN-AU], to Heimo Wolinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bredies, K., Wolinski, H. An active-contour based algorithm for the automated segmentation of dense yeast populations on transmission microscopy images. Comput. Visual Sci. 14, 341–352 (2011). https://doi.org/10.1007/s00791-012-0178-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-012-0178-8

Keywords

Navigation