Skip to main content
Log in

Propagation and bifurcation of cracks based on implicit surfaces and discontinuous velocities

  • Published:
Computing and Visualization in Science

Abstract

Cracks and their propagation with a given kinematic velocity are described as zero-level sets of a non-negative scalar function satisfying a transport equation. For smooth velocities this description is equivalent to a crack parameterization where the moving crack is obtained as the image of an initial reference crack under a coordinate transformation. Based on the implicit formulation, bifurcation type phenomena such as branching and merging of the crack, which cannot occur in the parameterized situation, are investigated numerically. Analytical and computational examples of the crack evolution with continuous as well as discontinuous velocities are presented in 2D and 3D domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adalsteinsson D., Sethian J.A. (1999) The fast construction of extension velocities in level set methods. J. Comput. Phys. 148: 2–22

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosio L., Soner H.M. (1996) Level set approach to mean curvature flow in arbitrary codimension. J. Differ. Geom. 43: 693–737

    MATH  MathSciNet  Google Scholar 

  3. Ambrosio, L., Soner, H.M.: Flow by mean curvature of surfaces of any codimension. In: Variational Methods for Discontinuous Structures, Progr. Nonlinear Differential Equations Appl., vol. 25, pp. 123–134. Birkhäuser, Basel (1996)

  4. Burchard P., Cheng L.-T., Merriman B., Osher S. (2001) Motion of curves in three spatial dimensions using a level set approach. J. Comput. Phys. 170: 720–741

    Article  MATH  MathSciNet  Google Scholar 

  5. Burger M. (2001) A level set method for inverse problems. Inverse Probl. 47(5): 1327–1355

    Article  MathSciNet  Google Scholar 

  6. Burger, M., Ring, W.: Foundation of a level-set based shape sensitivity analysis (in preparation)

  7. Conway E.D. (1967) Generalized solutions of linear differential equations with discontinuous coefficients and the uniqueness question for multidimensional quasilinear conservation laws. J. Math. Anal. Appl. 18: 238–251

    Article  MATH  MathSciNet  Google Scholar 

  8. Crandall M.G., Lions P.L. (1986) On existence and uniqueness of solutions of Hamilton–Jacobi equations. Nonlinear Anal. T M A 10: 353–370

    Article  MATH  MathSciNet  Google Scholar 

  9. Delfour M.C., Zolesio J.-P. (2001) Shapes and Geometries. SIAM, Philadelphia

    MATH  Google Scholar 

  10. DiPerna P.J., Lions P.L. (1989) Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98: 511–547

    Article  MATH  MathSciNet  Google Scholar 

  11. Filippov, A.F.: Differential equations with discontinuous right-hand side. In: Amer. Math. Soc. Transl. Ser. 2, vol. 42, pp. 199–231. AMS, Providence (1964)

  12. Friedman A., Liu Y. (1996) Propagation of cracks in elastic media. Arch. Rat. Mech. Anal. 136(3): 235–290

    Article  MATH  MathSciNet  Google Scholar 

  13. Hintermüller M., Ring W. (2003) A second order shape optimization approach for image segmentation. SIAM J. Appl. Math. 64(2): 442–467

    Article  MATH  MathSciNet  Google Scholar 

  14. Ito K., Kunisch K., Li Z. (2001) Level-set function approach to an inverse interface problem. Inverse Probl. 17(5): 1225–1242

    Article  MATH  MathSciNet  Google Scholar 

  15. Jiang G.-S., Peng D. (2000) Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21(6): 2126–2143

    Article  MATH  MathSciNet  Google Scholar 

  16. Khludnev A.M., Kovtunenko V.A. (2000) Analysis of Cracks in Solids. WIT-Press, Southampton

    Google Scholar 

  17. Khludnev A.M., Ohtsuka K., Sokolowski J. (2002) On derivative of energy functional for elastic bodies with cracks and unilateral conditions. Quart. Appl. Math. 60(1): 99–109

    MATH  MathSciNet  Google Scholar 

  18. Khludnev A.M., Sokolowski J. (1997) Modelling and Control in Solid Mechanics. Birkhäuser, Basel, Boston

    MATH  Google Scholar 

  19. Kovtunenko V.A. (2002) Sensitivity of interfacial cracks to non-linear crack front perturbations. J. Appl. Math. Mech. (ZAMM) 82(6): 387–398

    MATH  MathSciNet  Google Scholar 

  20. Lions, P.L.: Generalized Solutions of Hamilton–Jacobi Equations. Research Notes Math, vol. 69. Pitman, Boston (1982)

  21. Litman A., Lesselier D., Santosa F. (1998) Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set. Inverse Probl. 14: 685–706

    Article  MATH  MathSciNet  Google Scholar 

  22. Osher, S., Fedkiw R.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences, vol. 153. Springer, New York (2003)

  23. Osher S., Sethian J. (1988) Fronts propagating with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79: 12–49

    Article  MATH  MathSciNet  Google Scholar 

  24. Osher S., Shu C.-W. (1991) High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 28(4): 907–922

    Article  MATH  MathSciNet  Google Scholar 

  25. Petrova G., Popov B. (2001) Linear transport equations with μ-monotone coefficients. J. Math. Anal. Appl. 260: 307–324

    Article  MATH  MathSciNet  Google Scholar 

  26. Poupaud F., Rascle M. (1997) Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients. Commun. P.D.Es 22: 337–358

    MATH  MathSciNet  Google Scholar 

  27. Rice J.R. (1985) First-order variation in elastic fields due to variation in location of a planar crack front. J. Appl. Mech. 52: 571–579

    Article  MATH  Google Scholar 

  28. Sethian J.A. (1996) Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Material Science. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  29. Sethian J.A. (1996) A fast marching method for monotonically advancing fronts. Proc. Nat. Acad. Sci. 93: 1591–1595

    Article  MATH  MathSciNet  Google Scholar 

  30. Sokolowski J., Zolesio J.-P. (1992) Introduction to Shape Optimization. Shape Sensitivity Analysis. Springer, Berlin

    MATH  Google Scholar 

  31. Stolarska M., Chopp D.L. (2003) Modelling thermal fatigue cracking in integrated circuits by level sets and the extended finite element method. Int. J. Eng. Sci. 41: 2381–2410

    Article  Google Scholar 

  32. Sukumar N., Moës N., Moran B., Belytschko T. (2000) Extended finite element method for three-dimensional crack modelling. Int. J. Numer. Meth. Eng. 48: 1549–1570

    Article  MATH  Google Scholar 

  33. Tsitsiklis J.N. (1995) Efficient algorithms for globally optimal trajectories. IEEE Trans. Automat. Control 40: 1528–1538

    Article  MATH  MathSciNet  Google Scholar 

  34. Ventura G., Xu J.X., Belytschko T. (2002) A vector level set method and new discontinuity approximations for crack growth by EFG. Int. J. Numer. Meth. Eng. 54: 923–944

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kovtunenko.

Additional information

Communicated by G. Wittum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovtunenko, V.A., Kunisch, K. & Ring, W. Propagation and bifurcation of cracks based on implicit surfaces and discontinuous velocities. Comput. Visual Sci. 12, 397–408 (2009). https://doi.org/10.1007/s00791-008-0125-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-008-0125-x

Keywords

Mathematics Subject Classification (2000)

Navigation