Skip to main content
Log in

FEM for elliptic eigenvalue problems: how coarse can the coarsest mesh be chosen? An experimental study

  • Regular article
  • Published:
Computing and Visualization in Science

Abstract

In this paper, we consider the numerical discretization of elliptic eigenvalue problems by Finite Element Methods and its solution by a multigrid method. From the general theory of finite element and multigrid methods, it is well known that the asymptotic convergence rates become visible only if the mesh width h is sufficiently small, h ≤ h 0. We investigate the dependence of the maximal mesh width h 0 on various problem parameters such as the size of the eigenvalue and its isolation distance. In a recent paper (Sauter in Finite elements for elliptic eigenvalue problems in the preasymptotic regime. Technical Report. Math. Inst., Univ. Zürich, 2007), the dependence of h 0 on these and other parameters has been investigated theoretically. The main focus of this paper is to perform systematic experimental studies to validate the sharpness of the theoretical estimates and to get more insights in the convergence of the eigenfunctions and -values in the preasymptotic regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuška I. and Aziz A.K. (1972). The mathematical foundation of the finite element method. In: Aziz, A.K. (eds) The Mathematical Foundation of the Finite Element Method with Applications to Partial Differential Equations, pp 5–359. Academic Press, New York

    Google Scholar 

  2. Babuška, I., Osborn, J.: Eigenvalue problems. In: Ciarlet, P., Lions J. (eds.) Finite Element Methods (Part 1). Handbook of Numerical Analysis, vol. II, pp 641–788. Elsevier Science Publishers, Amsterdam (1991)

  3. Brandt A., McCormick S. and Ruge J. (1983). Multigrid methods for differential eigenproblems. SIAM J. Sci. Stat. Comput. 4: 244–260

    Article  MATH  MathSciNet  Google Scholar 

  4. Brownell F. (1955). Extended asymptotic eigenvalue distributions for bounded domains in n-space. Pac. J. Math. 5: 483–499

    MATH  MathSciNet  Google Scholar 

  5. Brownell F. (1955). An extension of Weyl’s asymptotic law for eigenvalues. Pac. J. Math. 5: 483–499

    MATH  MathSciNet  Google Scholar 

  6. Cai Z., Mandel J. and McCormick S. (1997). Multigrid methods for nearly singular linear equations and eigenvalue problems. SIAM J. Numer. Anal. 34: 178–200

    Article  MATH  MathSciNet  Google Scholar 

  7. Chatelin F. (1974). La méthode de Galerkin. Ordre de convergence des éléments propres. C.R. Acad. Sci. Pairs Sér. A 278: 1213–1215

    MATH  MathSciNet  Google Scholar 

  8. Chatelin F. (1983). Spectral Approximation of Linear Operators. Academic Press, New York

    MATH  Google Scholar 

  9. Courant R. and Hilbert D. (1924). Methoden der Mathematischen Physik. Bd. 1. Springer, Berlin

    Google Scholar 

  10. Friese T., Deuflhard P. and Schmidt F. (1999). A multigrid method for the complex Helmholtz eigenvalue problem. In: Lai, C.-H., Bjorstad, P., Cross, M., and Widlund, O. (eds) Procs 11th International Conference on Domain Decomposition Methods, pp 18–26. DDM-org Press, Bergen

    Google Scholar 

  11. Hackbusch W. (1979). On the computation of approximate eigenvalues and eigenfunctions of elliptic operators by means of a multi-grid method. SIAM J. Numer. Anal. 16(2): 201–215

    Article  MATH  MathSciNet  Google Scholar 

  12. Hackbusch, W.: Multi-Grid Methods and Applications, 2nd edn (2003). Springer, Berlin (1985)

  13. Hackbusch W. (1992). Elliptic Differential Equations. Springer, Heidelberg

    MATH  Google Scholar 

  14. Heuveline V. and Bertsch C. (2000). On multigrid methods for the eigenvalue computation of nonselfadjoint elliptic operators. East West J. Numer. Math. 8: 275–297

    MATH  MathSciNet  Google Scholar 

  15. Hwang T. and Parsons I. (1992). A multigrid method for the generalized symmetric eigenvalue problem: Part I algorithm and implementation. Int. J. Numer. Meth. Eng. 35: 1663

    Article  MATH  MathSciNet  Google Scholar 

  16. Hwang T. and Parsons I. (1992). A multigrid method for the generalized symmetric eigenvalue problem: Part II performance evaluation. Int. J. Numer. Meth. Eng. 35: 1677

    Article  MATH  MathSciNet  Google Scholar 

  17. Hwang T. and Parsons I. (1992). Multigrid solution procedures for structural dynamics eigenvalue problems. Comput. Mech. 10: 247

    Article  MATH  Google Scholar 

  18. Knyazev A. and Neymeyr K. (2003). Efficient solution of symmetric eigenvalue problems using multigrid preconditioners in the locally optimal block conjugate gradient method. Electron. Trans. Numer. Anal. (ETNA) 15: 38–55

    MATH  MathSciNet  Google Scholar 

  19. Levendorskii S. (1990). Asymptotic Distribution of Eigenvalues of Differential Operators. Springer, Berlin

    MATH  Google Scholar 

  20. Livshits I. (2004). An algebraic multigrid wave-ray algorithm to solve eigenvalue problems for the Helmholtz operator. Numer. Linear Algebra Appl. 11(4): 229–339

    Article  MATH  MathSciNet  Google Scholar 

  21. Livshits I. and Brandt A. (2006). Accuracy properties of the wave-ray multigrid algorithm for Helmholtz equations. SIAM J. Sci. Comput. 28(4): 1228–1251

    Article  MATH  MathSciNet  Google Scholar 

  22. Sauter, S.: Finite Elements for Elliptic Eigenvalue Problems in the Preasymptotic Regime. Technical Report, Math. Inst., Univ. Zürich, 17, 2007

  23. Sauter S.A. and Wittum G. (1992). A multigrid method for the computation of eigenmodes of closed water basins. Impact Comput. Sci. Eng. 4: 124–152

    Article  MATH  MathSciNet  Google Scholar 

  24. Schmidt F., Friese T., Zschiedrich L. and Deuflhard P. (2003). Adaptive multigrid methods for the vectorial maxwell eigenvalue problem for optical waveguide design. In: Jäger, W. and Krebs, H.-J. (eds) Mathematics. Key Technology for the Future, pp 279–292. Springer, Heidelberg

    Google Scholar 

  25. Strang G. and Fix G. (1973). An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  26. Weyl H. (1912). Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71: 441–479

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sauter.

Additional information

Communicated by G. Wittum.

Dedicated to Wolfgang Hackbusch on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banjai, L., Börm, S. & Sauter, S. FEM for elliptic eigenvalue problems: how coarse can the coarsest mesh be chosen? An experimental study. Comput. Visual Sci. 11, 363–372 (2008). https://doi.org/10.1007/s00791-008-0101-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-008-0101-5

Keywords

Navigation