Abstract
In this paper, we consider the numerical discretization of elliptic eigenvalue problems by Finite Element Methods and its solution by a multigrid method. From the general theory of finite element and multigrid methods, it is well known that the asymptotic convergence rates become visible only if the mesh width h is sufficiently small, h ≤ h 0. We investigate the dependence of the maximal mesh width h 0 on various problem parameters such as the size of the eigenvalue and its isolation distance. In a recent paper (Sauter in Finite elements for elliptic eigenvalue problems in the preasymptotic regime. Technical Report. Math. Inst., Univ. Zürich, 2007), the dependence of h 0 on these and other parameters has been investigated theoretically. The main focus of this paper is to perform systematic experimental studies to validate the sharpness of the theoretical estimates and to get more insights in the convergence of the eigenfunctions and -values in the preasymptotic regime.
Similar content being viewed by others
References
Babuška I. and Aziz A.K. (1972). The mathematical foundation of the finite element method. In: Aziz, A.K. (eds) The Mathematical Foundation of the Finite Element Method with Applications to Partial Differential Equations, pp 5–359. Academic Press, New York
Babuška, I., Osborn, J.: Eigenvalue problems. In: Ciarlet, P., Lions J. (eds.) Finite Element Methods (Part 1). Handbook of Numerical Analysis, vol. II, pp 641–788. Elsevier Science Publishers, Amsterdam (1991)
Brandt A., McCormick S. and Ruge J. (1983). Multigrid methods for differential eigenproblems. SIAM J. Sci. Stat. Comput. 4: 244–260
Brownell F. (1955). Extended asymptotic eigenvalue distributions for bounded domains in n-space. Pac. J. Math. 5: 483–499
Brownell F. (1955). An extension of Weyl’s asymptotic law for eigenvalues. Pac. J. Math. 5: 483–499
Cai Z., Mandel J. and McCormick S. (1997). Multigrid methods for nearly singular linear equations and eigenvalue problems. SIAM J. Numer. Anal. 34: 178–200
Chatelin F. (1974). La méthode de Galerkin. Ordre de convergence des éléments propres. C.R. Acad. Sci. Pairs Sér. A 278: 1213–1215
Chatelin F. (1983). Spectral Approximation of Linear Operators. Academic Press, New York
Courant R. and Hilbert D. (1924). Methoden der Mathematischen Physik. Bd. 1. Springer, Berlin
Friese T., Deuflhard P. and Schmidt F. (1999). A multigrid method for the complex Helmholtz eigenvalue problem. In: Lai, C.-H., Bjorstad, P., Cross, M., and Widlund, O. (eds) Procs 11th International Conference on Domain Decomposition Methods, pp 18–26. DDM-org Press, Bergen
Hackbusch W. (1979). On the computation of approximate eigenvalues and eigenfunctions of elliptic operators by means of a multi-grid method. SIAM J. Numer. Anal. 16(2): 201–215
Hackbusch, W.: Multi-Grid Methods and Applications, 2nd edn (2003). Springer, Berlin (1985)
Hackbusch W. (1992). Elliptic Differential Equations. Springer, Heidelberg
Heuveline V. and Bertsch C. (2000). On multigrid methods for the eigenvalue computation of nonselfadjoint elliptic operators. East West J. Numer. Math. 8: 275–297
Hwang T. and Parsons I. (1992). A multigrid method for the generalized symmetric eigenvalue problem: Part I algorithm and implementation. Int. J. Numer. Meth. Eng. 35: 1663
Hwang T. and Parsons I. (1992). A multigrid method for the generalized symmetric eigenvalue problem: Part II performance evaluation. Int. J. Numer. Meth. Eng. 35: 1677
Hwang T. and Parsons I. (1992). Multigrid solution procedures for structural dynamics eigenvalue problems. Comput. Mech. 10: 247
Knyazev A. and Neymeyr K. (2003). Efficient solution of symmetric eigenvalue problems using multigrid preconditioners in the locally optimal block conjugate gradient method. Electron. Trans. Numer. Anal. (ETNA) 15: 38–55
Levendorskii S. (1990). Asymptotic Distribution of Eigenvalues of Differential Operators. Springer, Berlin
Livshits I. (2004). An algebraic multigrid wave-ray algorithm to solve eigenvalue problems for the Helmholtz operator. Numer. Linear Algebra Appl. 11(4): 229–339
Livshits I. and Brandt A. (2006). Accuracy properties of the wave-ray multigrid algorithm for Helmholtz equations. SIAM J. Sci. Comput. 28(4): 1228–1251
Sauter, S.: Finite Elements for Elliptic Eigenvalue Problems in the Preasymptotic Regime. Technical Report, Math. Inst., Univ. Zürich, 17, 2007
Sauter S.A. and Wittum G. (1992). A multigrid method for the computation of eigenmodes of closed water basins. Impact Comput. Sci. Eng. 4: 124–152
Schmidt F., Friese T., Zschiedrich L. and Deuflhard P. (2003). Adaptive multigrid methods for the vectorial maxwell eigenvalue problem for optical waveguide design. In: Jäger, W. and Krebs, H.-J. (eds) Mathematics. Key Technology for the Future, pp 279–292. Springer, Heidelberg
Strang G. and Fix G. (1973). An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs
Weyl H. (1912). Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71: 441–479
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by G. Wittum.
Dedicated to Wolfgang Hackbusch on the occasion of his 60th birthday.
Rights and permissions
About this article
Cite this article
Banjai, L., Börm, S. & Sauter, S. FEM for elliptic eigenvalue problems: how coarse can the coarsest mesh be chosen? An experimental study. Comput. Visual Sci. 11, 363–372 (2008). https://doi.org/10.1007/s00791-008-0101-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00791-008-0101-5